【题目】如图,四边形ABCD是正方形,E、F分别是AB和AD延长线上的点,BE=DF,在此图中是否存在两个全等的三角形,并说明理由;它们能够由其中一个通过旋转而得到另外一个吗?简述旋转过程.
【答案】在此图中存在两个全等的三角形,即△CDF≌△CBE.△CDF是由△CBE绕点C沿顺时针方向旋转90°得到的.理由见解析.
【解析】
在△CDF和△CBE中,根据正方形的性质知DC=BC、已知条件DF=BE可以证得△CDF≌△CBF.
解:在此图中存在两个全等的三角形,即△CDF≌△CBE.理由如下:
∵点F在正方形ABCD的边AD的延长线上,
∴∠CDF=∠CDA=90°;
在△CDF和△CBE中,
,
∴△CDF≌△CBE(SAS),
∴∠FCD=∠ECB,CF=CE,
∴∠FCE=∠FCD+∠DCE=∠ECB+∠DCE=∠DCB=90°,
∴△CDF是由△CBE绕点C沿顺时针方向旋转90°得到的.
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,∠A=60°,点E、F分别为AD、DC上的动点,∠EBF=60°,点E从点A向点D运动的过程中,AE+CF的长度( )
A. 逐渐增加 B. 逐渐减小
C. 保持不变且与EF的长度相等 D. 保持不变且与AB的长度相等
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,AC是直径,BC=BA,在∠ACB的内部作∠ACF=30°,且CF=CA,过点F作FH⊥AC于点H,连接BF.
(1)若CF交⊙O于点G,⊙O的半径是4,求 的长;
(2)请判断直线BF与⊙O的位置关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】商场销售一款西服和领带,西服每套定价600元,领带每条定价80元,商场在黄金周期间开展促销活动,向顾客提供两种优惠方案:①买一套西服送一条领带;②西装和领带都按定价的90%付款.现某客户要购买西装20套,领带x条(x>20).
(1)若该客户按方案①购买,需付款多少元?(用含x的代数式表示)
(2)若该客户按方案②购买,需付款多少元?(用含x的代数式表示)
(3)若x=30,通过计算说明此时按哪种方案购买较为合算?
(4)是否存在这样的x值,两种付款方式的钱数一样多?如存在,请求这出这个值;如不存在,请说明理由?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润 (万元)与进货量 (t)近似满足函数关系;乙种水果的销售利润 (万元)与进货量 (t)近似满足函数关系 (其中, 、为常数),且进货量为1t时,销售利润为1. 4万元;进货量为2t时,销售利润为2. 6万元.
(1)求 (万元)与 (t)之间的函数关系式;
(2)如果市场准备进甲、乙两种水果共10t,设乙种水果的进货量为 (t),请你写出这两种水果所获得的销售利润之和 (万元)与 (t)之间的函数关系式.并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知(2x-1)=ax+bx+cx+dx+ex+fx+g(a,b,c,d,e,f,g均为常数),试求:
(1)a+b+c+d+e+f+g的值;
(2)a-b+c-d+e-f+g的值;
(3)a+c+e+g的值;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在5×5的方格(每小格边长为1)内有1只甲虫A,它爬行规律总是先左右,再上下.规定:向右与向上为正,向左与向下为负.从A到B的爬行路线记为:A→B(+1,+4),从B到A的爬行路线为:B→A(﹣1,﹣4),其中第一个数表示左右爬行信息,第二个数表示上下爬行信息.
(1)图中B→D( , ),C→ (+1, );
(2)若甲虫A的爬行路线为A→B→C→D,计算甲虫A爬行的路程?
(3)若甲虫A的爬行路线依次为(+2,+3),(﹣2,+1),(+3,﹣5),(﹣4,+2),最终到达点P处,请在图中标出甲虫A的爬行路线示意图及最终点P的位置.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.
(1)求从袋中随机摸出一球,标号是1的概率;
(2)从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某社区准备在甲乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩绘制了尚不完整的统计图表(如图),并计算了甲成绩的平均数和方差(见如图小宇的作业).
甲、乙两人射箭成绩统计表
第1次 | 第2次 | 第3次 | 第4次 | 第5次 | |
甲成绩 | 9 | 4 | 7 | 4 | 6 |
乙成绩 | 7 | 5 | 7 | a | 7 |
(1)a= ;
(2)请完成图中表示乙成绩变化情况的折线.
(3)观察图,可看出 的成绩比较稳定(填“甲”或“乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你的判断.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com