精英家教网 > 初中数学 > 题目详情
(1)探究新知:如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.
(2)结论应用:
①如图2,点M,N在反比例函数y=
kx
(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F,试证明:MN∥EF;
②若①中的其他条件不变,只改变点M,N的位置如图3所示,请判断MN与EF是否平行.
精英家教网
分析:(1)分别过点C,D,作CG⊥AB,DH⊥AB,垂足为G,H,根据CG∥DH,得到△ABC与△ABD同底,而两个三角形的面积相等,因而CG=DH,可以证明四边形CGHD为平行四边形,∴AB∥CD.
(2)判断MN与EF是否平行,根据(1)中的结论转化为证明S△EFM=S△EFN即可.
解答:解:(1)分别过点C,D,作CG⊥AB,DH⊥AB,垂足为G,H,则∠CGA=∠DHB=90°,(1分)
∴CG∥DH
∵△ABC与△ABD的面积相等
∴CG=DH(2分)
∴四边形CGHD为平行四边形
∴AB∥CD.(4分)

(2)①证明:连接MF,NE,(6分)
设点M的坐标为(x1,y1),点N的坐标为(x2,y2),
∵点M,N在反比例函数y=
k
x
(k>0)的图象上,
∴x1y1=k,x2y2=k,
∵ME⊥y轴,NF⊥x轴,
∴OE=y1,OF=x2
∴S△EFM=
1
2
x1•y1=
1
2
k,(7分)
S△EFN=
1
2
x2•y2=
1
2
k,(8分)
∴S△EFM=S△EFN;(9分)
∴由(1)中的结论可知:MN∥EF.

②由(1)中的结论可知:MN∥EF.(10分)
(若生使用其他方法,只要解法正确,皆给分.)
精英家教网
点评:本题考查了反比例函数与几何性质的综合应用,这是一个阅读理解的问题,正确解决(1)中的证明是解决本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1)探究新知:
如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.
精英家教网
(2)结论应用:
①如图2,点M,N在反比例函数y=
kx
(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F.
试证明:MN∥EF.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)探究新知:
①如图1,已知AD∥BC,AD=BC,点M,N是直线CD上任意两点.
求证:△ABM与△ABN的面积相等.
②如图2,已知AD∥BE,AD=BE,AB∥CD∥EF,点M是直线CD上任一点,点G是直线EF上任一点,试判断△ABM与△ABG的面积是否相等,并说明理由.
(2)结论应用:
如图3,抛物线y=ax2+bx+c的顶点为C(1,4),交x轴于点A(3,0),交y轴于点D,试探究在抛物线y=ax2+bx+c上是否存在除点C以外的点E,使得△ADE与△ACD的面积相等?若存在,请求出此时点E的坐标;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•河北一模)(1)探究新知:
①如图1,已知AD∥BC,AD=BC,点M,N是直线CD上任意两点.则S△ABM
=
=
S△ABN(填“<”,“=”,“>”).
②如图2,已知AD∥BE,AD=BE,AB∥CD∥EF,点M是直线CD上任一点,点G是直线EF上任一点.试判断△ABM与△ABG的面积是否相等,并说明理由.
(2)结论应用:
如图3,抛物线y=ax2+bx+c的顶点为C(1,4),交x轴于点A(3,0),交y轴于点D.试探究在抛物线y=ax2+bx+c上是否存在除点C以外的点E,使得△ADE与△ACD的面积相等?若存在,请求出此时点E的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)探究新知:如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.
(2)结论应用:如图2,点M,N在反比例函数y=
k
x
(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,F. 试证明:MN∥EF.
(3)变式探究:如图3,点M,N在反比例函数y=
k
x
(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,过点M作MG⊥x轴,过点N作NH⊥y轴,垂足分别为E、F、G、H.试证明:EF∥GH.

查看答案和解析>>

同步练习册答案