精英家教网 > 初中数学 > 题目详情

【题目】如图,已知点的重心,过的平行线,分别交于点,交于点,作,交于点,若四边形的面积为4,则的面积为______

【答案】9

【解析】

延长CPABG.由CPPG=21,推出CEBC=23ADAC=13,由CED∽△CBAAFD∽△ABC,推出SCED=×SABCSAFD=×SABC,由此可得:S平行四边形BEDF=SABC-SCED-SAFD= SABCSABC= S平行四边形BEDF即可解决问题.

解:如图,延长CPABG

∵点PABC的重心,
CPPG=21
DEAB
CEBE=21ADCD=12
CECB=23ADAC=13
EDABDFBC
∴△CED∽△CBAAFD∽△ABC
SCED=×SABCSAFD=×SABC
S平行四边形BEDF=SABC-SCED-SAFD= SABC

SABC= S平行四边形BEDF=×4=9.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小明在研究利用木板余料裁出最大面积的矩形时发现:如图1是一块直角三角形形状的木板余料,以为内角裁一个矩形当DEEF是中位线时,所裁矩形的面积最大若木板余料的形状改变,请你探究:

如图2,现有一块五边形的木板余料ABCDE现从中裁出一个以为内角且面积最大的矩形,则该矩形的面积为______

如图3,现有一块四边形的木板余料ABCD,经测量,且,从中裁出顶点MN在边BC上且面积最大的矩形PQMN,则该矩形的面积为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△中,∠,点边上一点,以为直径的⊙与边相切于点,与边交于点,过点于点,连接

(1)求证:

(2)若,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】大课间到了,小明和小欢两人打算从教室匀速跑到600米外的操场做课间操,刚出发时小明就发现鞋带松了,停下来系鞋带,小欢则直接前往操场,小明系好鞋带后立即沿同一路开始追赶小欢,小明在途中追上小欢后继续前行,小明到达操场时课间操还没有开始,于是小明站在操场等待,小欢继续前往操场,设小明和小欢两人想距s(米),小欢行走的时间为t(分钟),s关于t的函数的部分图象如图所示,当两人第三次相距60米时,小明离操场还有_____米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,已知抛物线y=﹣x2+x+2x轴交于AB两点,与y轴交于C点,抛物线的顶点为Q,连接BC

1)求直线BC的解析式;

2)点P是直线BC上方抛物线上的一点,过点PPDBC于点D,在直线BC上有一动点M,当线段PD最大时,求PM+MB最小值;

3)如图②,直线AQy轴于G,取线段BC的中点K,连接OK,将GOK沿直线AQ平移得GO'K,将抛物线y=﹣x2+x+2沿直线AQ平移,记平移后的抛物线为y,当抛物线y经过点Q时,记顶点为Q,是否存在以G'K'Q'为顶点的三角形是等腰三角形?若存在,求出点G的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知点P(﹣21)关于y轴的对称点P,点Tt0)是x轴上的一个动点,当PTO是等腰三角形时,t的值是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O为矩形ABCD的对称中心,AB5cmBC6cm,点EFG分别从ABC三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1cm/s,点F的运动速度为3cm/s,点G的运动速度为1.5cm/s,当点F到达点C(即点F与点C重合)时,三个点随之停止运动.在运动过程中,EBF关于直线EF的对称图形是EBF.设点EFG运动的时间为t(单位:s).

1)当t等于多少s时,四边形EBFB为正方形;

2)若以点EBF为顶点的三角形与以点FCG为顶点的三角形相似,求t的值;

3)是否存在实数t,使得点B与点O重合?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线l1x轴于点(10),直线l2x轴于点(20),直线l3x轴于点(30),……直线lnx轴于点(n0).函数yx的图象与直线l1l2l3、…、ln分别交于点A1A2A3、…、An;函数y2x的图象与直线l1l2l3、…、ln分别交于点B1B2B3、…、Bn.如果△OA1B1的面积记作S1,四边形A1A2B2B1的面积记作S2,四边形A2A3B3B2的面积记作S3,…,四边形An1AnBnBn1的面积记作Sn,那么S2018=(  )

A. 2017.5B. 2018C. 2018.5D. 2019

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠BAC90°,∠ABC45°,点DAB延长线上一点,连接CD,∠AMC90°,AMBC于点N,∠APB90°,APCD于点Q

1)求证:ANCQ

2)如图,点EBA的延长线上,且ADBE,连接EN并延长交CD于点F,求证:DQEN

3)在(2)的条件下,当3AE2AB时,请直接写出ENFN的值为   

查看答案和解析>>

同步练习册答案