精英家教网 > 初中数学 > 题目详情
11.在△ABC中,∠ABC=90°,D为平面内一动点,AD=a,AC=b,其中a,b为常数,且a<b.将△ABD沿射线BC方向平移,得到△FCE,点A、B、D的对应点分别为点F、C、E.连接BE.
(1)如图,若D在△ABC内部,请在图中画出△FCE;
(2)在(1)的条件下,若AD⊥BE,求BE的长(用含a,b的式子表示).

分析 (1)把A、D向右平移BC的距离即可得到对应点F、E,然后连接EF、FC、EC即可;
(2)易证四边形ABCF为矩形,则AC=BF,在直角△BEF中,利用勾股定理即可求解.

解答 解:(1)如图,


(2)连接BE、BF.
∵将△ABD沿射线BC方向平移,得到△FCE,
∴AD∥EF,AD=EF;AB∥FC,AB=FC.

∵∠ABC=90°,
∴四边形ABCF为矩形,
∴AC=BF.
∵AD⊥BE,
∴EF⊥BE.
∵AD=a,AC=b,
∴EF=a,BF=b.
∴BE=$\sqrt{{b}^{2}-{a}^{2}}$.

点评 本题考查了作图-平移变换,矩形的判定与性质以及勾股定理,掌握图形平移后边的大小,形状不变是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

1.如图,点A是反比例函数y=$\frac{5\sqrt{3}}{x}$(x>0)图象上一点,点B是x轴正半轴上一点,点C的坐标为(0,2),当△ABC是等边三角形时,点A的坐标为($\frac{3\sqrt{3}}{5}$,$\frac{25}{3}$).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.在平面直角坐标系中,抛物线C1:y=$\frac{1}{2}$x2,把C1沿x轴向右平移m(m>0)个单位长,得抛物线C2,C1和C2的交点为Q,顶点分别是O和P.直接写出抛物线C2的函数解析式(含m),求Q点的坐标(含m).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.一个用于防震的L形包装塑料泡沫如图所示,则该物体的俯视图是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A和点B在小正方形的顶点上.请你在图1、图2中各画出一个以A,B为顶点的直角三角形,使所画两直角三角形的形状不同(另一顶点为小正方形的顶点).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.已知关于x的不等式组$\left\{\begin{array}{l}{x-a>0}\\{3-x>0}\end{array}\right.$的整数解共有4个,则a的取值范围是-2≤a<-1.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如果一组数据x1,x2,…,xn的方差是0.6,则另组数据的x1-2013,x2-2013,…,xn-2013的方差是0.6.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.2010年3月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数、众数分别是(  )
A.32,31B.31,32C.31,31D.32,35

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.解方程组:$\frac{3x+2y}{4}$=$\frac{x+5y}{-3}$=$\frac{2x+y+2}{5}$.

查看答案和解析>>

同步练习册答案