【题目】为了创建文明城市,增强学生的环保意识.随机抽取8名学生,对他们的垃圾分类投放情况进行调查,这8名学生分别标记为,其中“√”表示投放正确,“×”表示投放错误,统计情况如下表.
学生 垃圾类别 | ||||||||
厨余垃圾 | √ | √ | √ | √ | √ | √ | √ | √ |
可回收垃圾 | √ | × | √ | × | × | √ | √ | √ |
有害垃圾 | × | √ | × | √ | √ | × | × | √ |
其他垃圾 | × | √ | √ | × | × | √ | √ | √ |
(1)求8名学生中至少有三类垃圾投放正确的概率;
(2)为进一步了解垃圾分类投放情况,现从8名学生里“有害垃圾”投放错误的学生中随机抽取两人接受采访,试用标记的字母列举所有可能抽取的结果.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,的三个顶点的坐标分别为点、、.
(1)的外接圆圆心的坐标为 .
(2)①以点为位似中心,在网格区域内画出,使得与位似,且点与点对应,位似比为2:1,②点坐标为 .
(3)的面积为 个平方单位.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b与反比例函数y=的图象交于A(2,3),B(﹣3,n)两点.
(1)求反比例函数的解析式;
(2)过B点作BC⊥x轴,垂足为C,若P是反比例函数图象上的一点,连接PC,PB,求当△PCB的面积等于5时点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数y=(x>0)的图象与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积为30,则k的值是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把一个函数图象上每个点的纵坐标变为原来的倒数(原函数图象上纵坐标为0的点除外)横坐标不变,可以得到另一个函数的图象,我们称这个过程为倒数变换.
例如:如图1,将y=x的图象经过倒数变换后可得到y=的图象.特别地,因为y=x图象上纵坐标为0的点是原点,所以该点不作变换,因此y=的图象上也没有纵坐标为0的点.
(1)请在图2中画出y=﹣x﹣1的图象和它经过倒数变换后的图象;
(2)观察上述图象,结合学过的关于函数图象和性质的知识.
①猜想:倒数变换得到的图象和原函数的图象之间可能有怎样的联系?写出两条即可.
②说理:请简要解释你其中一个猜想;
(3)设图2中的图象的交点为A,B,若点C的坐标为(﹣1,m),△ABC的面积为6,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将边长为6cm的正方形ABCD折叠,使点D落在AB边的中点E处,折痕为FH,点C落在Q处,EQ与BC交于点G,求△EBG的周长是__________cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某汽车专卖店经销某种型号的汽车已知该型号汽车的进价为10万元/辆,经销一段时间后发现:当该型号汽车售价定为20万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出1辆
(1)若每辆汽车的售价降低x万元,则每周的销售量是 辆(用含x的代数式表示)
(2)若该店计划平均每周的销售利润是90万元,为了尽快减少库存,需将每辆汽车的售价降低多少万元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=﹣x2+4x+5与y轴交于点A,与x轴的正半轴交于点C.
(1)求直线AC解析式;
(2)过点A作AD平行于x轴,交抛物线于点D,点F为抛物线上的一点(点F在AD上方),作EF平行于y轴交AC于点E,当四边形AFDE的面积最大时?求点F的坐标,并求出最大面积;
(3)若动点P先从(2)中的点F出发沿适当的路径运动到抛物线对称轴上点M处,再沿垂直于y轴的方向运动到y轴上的点N处,然后沿适当的路径运动到点C停止,当动点P的运动路径最短时,求点N的坐标,并求最短路径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知抛物线y=x2﹣2ax+4a+2(a是常数),
(Ⅰ)若该抛物线与x轴的一个交点为(﹣1,0),求a的值及该抛物线与x轴另一交点坐标;
(Ⅱ)不论a取何实数,该抛物线都经过定点H.
①求点H的坐标;
②证明点H是所有抛物线顶点中纵坐标最大的点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com