【题目】操作与探究
综合实践课,老师把一个足够大的等腰直角三角尺AMN靠在一个正方形纸片ABCD的一侧,使边AM与AD在同
一直线上(如图1),其中∠AMN=90°,AM=MN.
(1)猜想发现
老师将三角尺AMN绕点A逆时针旋转α.如图2,当0<α<45°时,边AM,AN分别与直线BC,CD交于点E,F,连结EF.小明同学探究发现,线段EF,BE,DF满足EF=BE﹣DF;如图3,当45°<α<90°时,其它条件不变.
①填空:∠DAF+∠BAE=度;
②猜想:线段EF,BE,DF三者之间的数量关系是: .
(2)证明你的猜想;
(3)拓展探究
在45°<α<90°的情形下,连结BD,分别交AM,AN于点G,H,如图4连结EH,试证明:EH⊥AN.
【答案】
(1)45,EF=BE+DF
(2)解:证明:如图3,延长CB至点K,使BK=DF,连结AK.
∵四边形ABCD是正方形,
∴AB=AD,∠BAD=∠ABK=∠D=90°.
在△ABK和△ADF中, ,
∴△ABK≌△ADF(SAS),
∴AK=AF,∠BAK=∠DAF.
∵∠AMN=90°,AM=MN,
∴∠MAN=∠N=45°,
∴∠DAF+∠BAE=45°.
∴∠EAK=∠BAK+∠BAE=45°,
∴∠EAF=∠EAK.
在△AEF和△AEK中, ,
∴△AEF≌△AEK(SAS).
∴EF=EK.
∴EF=BE+DF.
(3)解:证明:如图4,连结AC.
∵四边形ABCD是正方形,
∴∠ACE=∠ADH=∠CAD=45°.
∵∠EAF=45°,
∴∠EAF=∠CAD=45°.
∴∠CAE=∠DAH,
∴△ADH∽△ACE.
∴ .
∴ ,
又∵∠CAD=∠EAF=45°,
∴△ADC∽△AHE.
∴∠ADC=∠AHE=90°.
∴EH⊥AN.
【解析】(1)解:①∠DAF+∠BAE=45°;
所以答案是:45;②线段EF,BE,DF三者之间的数量关系是EF=BE+DF;
所以答案是:EF=BE+DF;
【考点精析】利用正方形的性质和相似三角形的判定与性质对题目进行判断即可得到答案,需要熟知正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.
科目:初中数学 来源: 题型:
【题目】阅读理解:
在解形如3|x-2|=|x-2|+4这一类含有绝对值的方程时,我们可以根据绝对值的意义分x<2和x≥2两种情况讨论:
①当x<2时,原方程可化为-3(x-2)=-(x-2)+4,解得:x=0,符合x<2
②当x≥2时,原方程可化为3(x-2)=(x-2)+4,解得:x=4,符合x≥2
∴原方程的解为:x=0,x=4.
解题回顾:本题中2为x-2的零点,它把数轴上的点所对应的数分成了x<2和x≥2两部分,所以分x<2和x≥2两种情况讨论.
知识迁移:
(1)运用整体思想先求|x-3|的值,再去绝对值符号的方法解方程:|x-3|+8=3|x-3|;
知识应用:
(2)运用分类讨论先去绝对值符号的方法解类似的方程:|2-x|-3|x+1|=x-9.
(提示:本题中有两个零点,它们把数轴上的点所对应的数分成了几部分呢?)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点D在∠ABC内,点E为边BC上一点,连接DE、CD.
(1)如图1,连接AE,若∠AED=∠A+∠D,求证:AB//CD.
(2)在(1)的结论下,过点A的直线MA//ED.
①如图2,当点E在线段BC上时,猜想并验证∠MAB与∠CDE的数量关系;
②如图3,当点E在线段BC的延长线上时,猜想并验证∠MAB与∠CDE的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y1=kx+2与反比例函数y2= 的图象交于点A(m,3),与坐标轴分别交于B,C两点.
(1)若y1>y2>0,求自变量x的取值范围;
(2)动点P(n,0)在x轴上运动,当n为何值时,|PA﹣PC|的值最大?并求最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,长方形放置在平面直角坐标系中,已知点,点,动点从出发,沿以每秒个单位的速度运动,同时,动点从出发,沿以每秒个单位的速度运动.当其中一点到达点时,两动点同时停止运动设运动时间为.
(1)当______时,点追上点,此时点的坐标为_______.
(2)当时,分别取、的中点、,如果四边形的面积等于,请求出时间的取值;
(3)如图2,连接,已知,在(2)问的条件下,过点作于点,问在长方形的四条边上是否存在点,使得线段,若存在,请直接写出点的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∠BOC=60°,顶点C的坐标为(m,3 ),反比例函数y= 的图象与菱形对角线AO交D点,连接BD,当DB⊥x轴时,k的值是( )
A.6
B.﹣6
C.12
D.﹣12
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】规定两数a,b之间的一种运算,记作(a,b):如果,那么(a,b)=c.
例如:因为23=8,所以(2,8)=3.
(1)根据上述规定,填空:
(3,9)=_____,(5,125)=_____,(,)=_____,(-2,-32)=_____.
(2)令,,,试说明下列等式成立的理由:.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某服装店用4500元购进一批衬衫,很快售完,服装店老板又用2100元购进第二批该款式的衬衫,进货量是第一次的一半,但进价每件比第一批降低了10元.
(1)这两次各购进这种衬衫多少件?
(2)若第一批衬衫的售价是200元/件,老板想让这两批衬衫售完后的总利润不低于1950元,则第二批衬衫每件至少要售多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com