精英家教网 > 初中数学 > 题目详情

【题目】如图,在⊙O的内接四边形ACDB中,AB为直径,AC:BC=1:2,点D为弧AB的中点,BE⊥CD垂足为E.
(1)求∠BCE的度数;
(2)求证:D为CE的中点;
(3)连接OE交BC于点F,若AB= ,求OE的长度.

【答案】
(1)解:连接AD,

∵D为弧AB的中点,

∴AD=BD,

∵AB为直径,

∴∠ADB=90°,

∴∠DAB=∠DBA=45°,

∴∠DCB=∠DAB=45°


(2)解:证明:∵BE⊥CD,又∵∠ECB=45°,

∴∠CBE=45°,

∴CE=BE,

∵四边形ACDB是圆O的内接四边形,

∴∠A+∠BDC=180°,

又∵∠BDE+∠BDC=180°,

∴∠A=∠BD,

又∵∠ACB=∠BED=90°,

∴△ABC∽△DBE,

∴DE:AC=BE:BC,

∴DE:BE=AC:BC=1:2,

又∵CE=BE,

∴DE:CE=1:2,

∴D为CE的中点


(3)解:∵CO=BO,CE=BE,

∴OE垂直平分BC,

∴F为BC中点,

又∵O为AB中点,

∴OF为△ABC的中位线,

∴OF= AC,

∵∠BEC=90°,EF为中线,

∴EF= BC,

在Rt△ACB中,AC2+BC2=AB2

∵AC:BC=1:2,AB=

∴AC= ,BC=2

∴OE=OF+EF=1.5


【解析】(1)连接AD,由D为弧AB的中点,得到AD=BD,根据圆周角定理即可得到结论;(2)由已知条件得到∠CBE=45°,根据圆内接四边形的性质得到∠A=∠BD,根据相似三角形的性质得到DE:AC=BE:BC,即可得到结论.(3)连接CO,根据线段垂直平分线的判定定理得到OE垂直平分BC,由三角形的中位线到现在得到OF= AC,根据直角三角形的性质得到EF= BC,由勾股定理即可得到结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,直线AB:y=﹣x+by轴于A(0,1),交x轴于点B.过点E(1,0)作x轴的垂线EFAB于点D,P是直线EF上一动点,且在点D的上方,设P(1,n).

(1)直线AB的表达式为__________________;

(2)①求△ABP的面积(用含n的代数式表示);

②当SABP=2时,求点P的坐标;

③在②的条件下,以PB为边在第一象限作等腰直角三角形BPC,请直接写出点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料.

点M,N在数轴上分别表示数m和n,我们把m,n之差的绝对值叫做点M,N之间的距离,即MN=|m﹣n|.如图,在数轴上,点A,B,O,C,D的位置如图所示,则DC=|3﹣1|=|2|=2;CO=|1﹣0|=|1|=1;BC=|(﹣2)﹣1|=|﹣3|=3;AB=|(﹣4)﹣(﹣2)|=|﹣2|=2.

(1)OA=  ,BD=  

(2)|1﹣(﹣4)|表示哪两点的距离?

(3)点P为数轴上一点,其表示的数为x,用含有x的式子表示BP=  ,当BP=4时,x=  ;当|x﹣3|+|x+2|的值最小时,x的取值范围是  

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于实数a,我们规定:用符号表示不大于的最大整数,称a的根整数,例如:=3

(1)仿照以上方法计算:=______=_____

(2),写出满足题意的x的整数值______

如果我们对a连续求根整数,直到结果为1为止.例如:对10连续求根整数2 =1,这时候结果为1

(3)100连续求根整数,____次之后结果为1

(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某物流公司承接A、B两种货物运输业务,已知3月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;4月份由于工人工资上涨,运费单价上涨情况为:A货物运费单价增加了40%,B货物运费单价上涨到40元/吨;该物流公司4月承接的A种货物和B种数量与3月份相同,4月份共收取运费13000元.试求该物流公司月运输A、B两种货物各多少吨?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三方面为选手打分,各项成绩均按百分制,进入决赛的两名选手的单项成绩如下表所示:

选手

演讲内容

演讲能力

演讲效果

85

95

95

95

85

95

(1)如果认为这三方面的成绩同等重要,从他们的成绩看,谁能胜出?

(2)如果按演讲内容占50%,演讲能力占40%,演讲效果占10%的比例计算甲、乙的平均成绩,那么谁将胜出?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是你平均每天参加体育活动的时间是多少,共有4个选项:A 1.5小时以上;B 11.5小时;C 0.51小时;D 0.5小时以下.图12是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:

1)本次一共调查了多少名学生?

2)在图1中将选项B的部分补充完整;

3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=﹣x+4的图象与y轴交于点A,与x轴交于点B,过AB中点D的直线CDx轴于点C,且经过第一象限的点E(6,4).

(1)求A,B两点的坐标及直线CD的函数表达式;

(2)连接BE,求△DBE的面积;

(3)连接DO,在坐标平面内找一点F,使得以点C,O,F为顶点的三角形与△COD全等,请直接写出点F的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】脸谱是中国戏曲男演员脸部的彩色化妆.这种脸部化妆主要用于净(花脸)和丑(小丑),表现人物的性格和特征.现有四张脸谱,如图所示:有两张相同的表现忠勇侠义的净角姜维,有一张表现直爽刚毅的净角包拯,有一张表现阴险奸诈的丑角夏侯婴.
(1)随机抽取一张,获得一张净角脸谱的概率是
(2)随机抽取两张,求获得一张姜维脸谱和一张包拯脸谱的概率.

查看答案和解析>>

同步练习册答案