精英家教网 > 初中数学 > 题目详情
精英家教网如图,△ABC中,DE∥BC,BC=6,若
AD
AB
=
1
3
,则DE的长为
 
分析:在△ABC中,DE∥BC可证△ADE∽△ABC,再根据相似三角形对应边长成比例,解出DE的长.
解答:解:∵DE∥BC,
∴△ADE∽△ABC,
∴AD:AB=DE:BC=1:3,
∵BC=6,
∴DE=2.
点评:此题主要考查相似三角形的性质及利用相似三角形的相似比求DE的长,比较简单.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案