精英家教网 > 初中数学 > 题目详情

【题目】如图,直线x轴于点A,交y轴于点B,点Px轴上一动点,以点P为圆心,以1个单位长度为半径作P,当P与直线AB相切时,点P的坐标是______________.

【答案】

【解析】

根据函数解析式求得A0),B0-3),得到OA=OB=3,根据勾股定理得到AB=6,设⊙P与直线AB相切于D,连接PD,则PDABPD=1,根据相似三角形的性质即可得到结论.

解:∵直线x轴于点A,交y轴于点B
∴令x=0,得y=-3,令y=0,得x=-4
A0),B0-3),
OA=OB=3
AB=6
设⊙P与直线AB相切于D
连接PD

如图示:


PDABPD=1

∵∠ADP=AOB=90°,∠PAD=BAO
∴△APD∽△ABO

P点坐标为:

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一个圆形喷水池的中央竖直安装了一个柱形喷水装置OAA处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,水流喷出的高度ym)与水平距离xm)之间的关系式是x0

1)求水流喷出的最大高度是多少m?此时的水平距离是多少m

2)若不计其他因素,水池的半径OB至少为多少m,才能使喷出的水流不落在池外.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边周长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米.

(1)若苗圃园的面积为72平方米,求x

(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;

(3)当这个苗圃园的面积不小于100平方米时,直接写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明大学毕业回家乡创业第一期培植盆景与花卉各50盆售后统计盆景的平均每盆利润是160花卉的平均每盆利润是19调研发现:

①盆景每增加1盆景的平均每盆利润减少2;每减少1盆景的平均每盆利润增加2;②花卉的平均每盆利润始终不变.

小明计划第二期培植盆景与花卉共100设培植的盆景比第一期增加x第二期盆景与花卉售完后的利润分别为W1,W2(单位元)

(1)用含x的代数式分别表示W1,W2;

(2)当x取何值时第二期培植的盆景与花卉售完后获得的总利润W最大最大总利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,为了测量出楼房AC的高度,从距离楼底C处米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1:的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈,计算结果用根号表示,不取近似值).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,ABC=90°,以AB为直径作O,点DO上一点,且CD=CB,连接DO并延长交CB的延长线于点E,连接OC.

(1) 判断直线CDO的位置关系,并说明理由;

(2) BE=DE=3,求O的半径及AC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的口袋中装有4个完全相同的小球,分别标有数字1234,另有一个可以自由旋转的圆盘.被分成面积相等的3个扇形区,分别标有数字123(如图所示).小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一人从口袋中摸出一个小球,另一个人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去;否则小亮去.

1)用树状图或列表法求出小颖参加比赛的概率;

2)你认为该游戏公平吗?请说明理由;若不公平,请修改该游戏规则,使游戏公平.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,P是矩形ABCD内一点,连结P与矩形ABCD各顶点,矩形EFGH各顶点分别在边APBPCPDP上,已知AE2EPEFAB,图中两块阴影部分的面积和为S.则矩形ABCD的面积为(  )

A.4SB.6SC.12SD.18S

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ADBC边上的高,AEBC边上的中线,C=45°sinB=AD=1

1)求BC的长;

2)求tanDAE的值.

查看答案和解析>>

同步练习册答案