精英家教网 > 初中数学 > 题目详情
19.已知关于x的二次函数y=ax2+bx+c的图象经过点(-2,y1),(-1,y2),(1,0),且y1<0<y2,对于以下结论:①abc>0;②a+3b+2c≤0;③对于自变量x的任意一个取值,都有$\frac{a}{b}$x2+x≥-$\frac{b}{4a}$;④在-2<x<-1中存在一个实数x0,使得x0=-$\frac{a+b}{a}$,其中结论错误的是②(只填写序号).

分析 ①正确.画出函数图象即可判断.
②错误.由图象可知,-$\frac{b}{2a}$>-$\frac{1}{2}$,推出b>a,故b-a可以是正数,所以a+3b+2c=a+3b-2a-2b=b-a>0,故错误.
③正确.利用函数y1=$\frac{a}{b}$x2+x=$\frac{a}{b}$(x2+$\frac{b}{a}$x)=$\frac{a}{b}$(x+$\frac{b}{2a}$)2-$\frac{b}{4a}$,根据函数的最值问题即可解决.
④令y=0则ax2+bx-a-b=0,设它的两个根为x1,1,则x1•1=$\frac{-a-b}{a}$=-$\frac{a+b}{a}$,求出x1即可解决问题.

解答 解:由题意二次函数图象如图所示,

∴a<0.b<0,c>0,
∴abc>0,故①正确.
∵-$\frac{b}{2a}$>-$\frac{1}{2}$,
∵a<0,
∴b>a,
∴b-a>0,
∵a+b+c=0,
∴c=-a-b,
∴a+3b+2c=a+3b-2a-2b=b-a>0,
∴a+3b+2c≤0,故②错误.
∵函数y1=$\frac{a}{b}$x2+x=$\frac{a}{b}$(x2+$\frac{b}{a}$x)=$\frac{a}{b}$(x+$\frac{b}{2a}$)2-$\frac{b}{4a}$,
∵$\frac{a}{b}$>0,
∴函数y1有最小值-$\frac{b}{4a}$,
∴$\frac{a}{b}$x2+x≥-$\frac{b}{4a}$,故③正确.
∵y=ax2+bx+c的图象经过点(1,0),
∴a+b+c=0,
∴c=-a-b,
令y=0则ax2+bx-a-b=0,设它的两个根为x1,1,
∵x1•1=$\frac{-a-b}{a}$=-$\frac{a+b}{a}$,
∴x1=-$\frac{a+b}{a}$,
∵-2<x1<x2
∴在-2<x<-1中存在一个实数x0,使得x0=-$\frac{a+b}{a}$,故④正确,
故答案为②.

点评 本题考查二次函数的图象与系数的关系、二次函数图象上的点的坐标特征,解题的关键是灵活应用二次函数的性质解决问题,学会构建二次函数解决最值问题,属于中考填空题中的压轴题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.如图,已知二次函数y=x2+bx+c图象顶点为C,与直线y=x+m图象交于AB两点,其中A点的坐标为(3,4),B点在y轴上.
(1)求这个二次函数的解析式;
(2)联结AC,求∠BAC的正切值;
(3)点P为直线AB上一点,若△ACP为直角三角形,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.化简求值:$\frac{{a}^{2}-1}{{a}^{2}-2a+1}$+$\frac{2a-{a}^{2}}{a-2}$÷a,其中a=-2.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.我国计划在2020年左右发射火星探测卫星,据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学记数法可表示为(  )
A.5.5×106千米B.5.5×107千米C.55×106千米D.0.55×108千米

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC,则下列结论:
①abc>0;②9a+3b+c<0;③c>-1;④关于x的方程ax2+bx+c=0(a≠0)有一个根为-$\frac{1}{a}$
其中正确的结论个数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.设四边形的内角和等于a,五边形的外角和等于b,则a与b的关系是(  )
A.a>bB.a=bC.a<bD.b=a+180°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.不等式组$\left\{\begin{array}{l}{\frac{1}{2}x-1≤7-\frac{3}{2}x}\\{5x-2>3(x+1)}\end{array}\right.$的解集表示在数轴上,正确的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

8.如果分式$\frac{2}{x-1}$有意义,那么x的取值范围是x≠1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.下列命题是真命题的是(  )
A.必然事件发生的概率等于0.5
B.5名同学二模的数学成绩是92,95,95,98,110,则他们的平均分是98分,众数是95
C.射击运动员甲、乙分别射击10次且击中环数的方差分别是5和18,则乙较甲稳定
D.要了解金牌获得者的兴奋剂使用情况,可采用抽样调查的方法

查看答案和解析>>

同步练习册答案