精英家教网 > 初中数学 > 题目详情

【题目】已知:△ABC内接于⊙O,过点A作直线EF.
(1)如图①,AB为直径,要使EF为⊙O的切线,还需添加的条件是(只需写出三种情况): ①;②;③
(2)如图②,AB是非直径的弦,∠CAE=∠B,求证:EF是⊙O的切线.
(3)如图③,AB是非直径的弦,∠CAE=∠ABC,EF还是⊙O的切线吗?若是,请说明理由;若不是,请解释原因.

【答案】
(1)AB⊥EF、;∠BAE=90°;∠ABC=∠EAC
(2)证明:如图2,作直径AD,连结CD,

∵AD为直径,

∴∠ACD=90°,

∴∠D+∠CAD=90°,

∵∠D=∠B,∠CAE=∠B,

∴∠CAE=∠D,

∴∠EAC+∠CAD=90°,

∴AD⊥EF,

∴EF为⊙O的切线;


(3)如图3,作直径AD,连结CD,BD,

∵AD为直径,

∴∠ABD=90°,

∵∠CAE=∠ABC,

∴∠DAE+∠DAC=∠ABD+∠DBC,

而∠DAC=∠DBC,

∴∠DAE=∠ABD=90°,

∴AD⊥EF,

∴EF为⊙O的切线.


【解析】(1)解:当AB⊥EF或∠BAE=90°可判断EF为⊙O的切线; 当∠ABC=∠EAC,∵AB为直径,
∴∠ACB=90°,
∴∠ABC+∠CAB=90°,
∴∠EAC+∠CAB=90°,
∴AB⊥EF,
∴EF为⊙O的切线;
所以答案是AB⊥EF、∠BAE=90°、∠ABC=∠EAC;

【考点精析】掌握切线的判定定理是解答本题的根本,需要知道切线的判定方法:经过半径外端并且垂直于这条半径的直线是圆的切线.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,DBC边上的中点,∠BDE=∠CDF,请你添加一个条件,使DE=DF成立.你添加的条件是 (不再添加辅助线和字母)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC是等腰直角三角形,∠BAC=90°,点DBC的中点,作正方形DEFG,连接AE,若BC=DE=2,将正方形DEFG绕点D逆时针方向旋转,在旋转过程中,当AE为最大值时,则AF的值_____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,扇形纸扇完全打开后,阴影部分为贴纸,外侧两竹条AB,AC的夹角为120°,弧BC的长为30πcm,AD的长为15cm,则贴纸的面积等于cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,AB=6,AD=8,P是BC边上一个动点(不与点B重合).设PA=x,点D到PA的距离为y,求y与x之间的函数表达式,并求出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图中的图像(折线ABCDE)描述了一汽车在某一直线上的行驶过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120千米;②汽车在行驶途中停留了0.5小时;③汽车在整个行驶过程中的平均速度为80.8千米/时;④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减小.⑤汽车离出发地64千米是在汽车出发后1.2小时时。其中正确的说法共有( )

A.1个     B.2个      C.3个      D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为推广阳光体育“大课间”活动,某中学决定在学生中开设A:实心球,B:立定跳远,C:跳绳,D:跑步四种活动项目,为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图.请结合图中的信息解答下列问题:
(1)在这项调查中,共调查了多少名学生?
(2)请计算喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整;
(3)若调查到喜欢“跳绳”的4名学生中有2名男生,2名女生.现从这4名学生中任意抽取2名学生.请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,△ABC的位置如图所示,且顶点在网格格点上将△ABC向右平移7个单位长度,再向下平移2个单位长度得到△A1B1C1.(图中每个小方格边长均为1个单位长度),请解决下列问题:

(1)在图中画出平移后的△A1B1C1

(2)直接写出点B1、C1的坐标:B1      ),C1      );

(3)填空:△ABC的面积是   (平方单位).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线EF,CD相交于点0,OA⊥OB,且OC平分∠AOF,

(1)若∠AOE=40°,求∠BOD的度数;

(2)若∠AOE=α,求∠BOD的度数;(用含α的代数式表示)

(3)从(1)(2)的结果中能看出∠AOE和∠BOD有何关系?

查看答案和解析>>

同步练习册答案