精英家教网 > 初中数学 > 题目详情

【题目】(背景)某班在一次数学实践活动中,对矩形纸片进行折叠实践操作,并将其产生的数学问题进行相关探究. (操作)如图,在矩形ABCD中,AD=6,AB=4,点P是BC边上一点,现将△APB沿AP对折,得△APM,显然点M位置随P点位置变化而发生改变
(问题)试求下列几种情况下:点M到直线CD的距离

(1)∠APB=75°;
(2)P与C重合;
(3)P是BC的中点.

【答案】
(1)解:当∠APB=75°时,如图1,过M作EF⊥AD,则EF⊥BC,

∵∠AMP=∠B=∠MFP=90°,

∴∠AME=∠MPF,

∴△AEM∽△MFP,

∵∠APB=75°,

∴∠MPF=30°,

∵AM=AB=4,

∴AE=2,

∴DE=4


(2)解:当P与C重合,如图2,过M作GH∥AD交BA,CD的延长线于G,H,

则四边形ADHG是矩形,

∵∠AMP=∠ABC=∠AMC=90°,

∴∠AMG=∠MPH,

∴△AMG∽△MHP,

设AG=x,则DH=x,

∴PH=4+x,

∴MH= x,

在Rt△MHP中,MH2+PH2=MC2

即( x)2+(4x)2=62

∴x= (负值舍去),

∴MH=


(3)解:当P是BC的中点时,如图3,过M作EF∥AB交AB,BC于E,F,

∵P是BC的中点,

∴BP=3,

设PF=x,则BF=3+x,

∴AE=3+x,

由折叠的性质得,AM=AB=4,PM=PB=3,∠AMP=∠B=90°,

∴△AEM∽△MFP,

∴EM= x,

在Rt△AEM中,

AE2+EM2=AM2

即( x)2+(3+x)2=42

∴x= (负值舍去),

∴DE=


【解析】(1)如图1,过M作EF⊥AD,则EF⊥BC,由∠AMP=∠B=∠MFP=90°,得到∠AME=∠MPF,推出△AEM∽△MFP,根据已知条件得到∠MPF=30°,AE=2,即可得到结论;(2)如图2,过M作GH∥AD交BA,CD的延长线于G,H,则四边形ADHG是矩形,推出△AMG∽△MHP,设AG=x,则DH=x,得到PH=4+x,列比例式得到MH= x,根据勾股定理得到x= (负值舍去),即可得到结论;(3)当P是BC的中点时,如图3,过M作EF∥AB交AB,BC于E,F,推出△AEM∽△MFP,根据相似三角形的性质得到 ,得到EM= x,根据勾股定理列方程即可得到结论.
【考点精析】根据题目的已知条件,利用翻折变换(折叠问题)的相关知识可以得到问题的答案,需要掌握折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,E是AD上一点,延长CE到点F,使∠FBC=∠DCE.
(1)求证:∠D=∠F;
(2)用直尺和圆规在AD上作出一点P,使△BPC∽△CDP(保留作图的痕迹,不写作法).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,把一个棱长为的正方体的每个面等分成个小正方形,然后沿每个面正中心的一个正方形向里挖空(相当于挖去个小正方体),所得到的几何体的表面积是(

A. 78 B. 72 C. 54 D. 48

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某体育老师对自己任教的55名男生进行一百米摸底测试,若规定男生成绩为16秒合格,下表是随机抽取的10名男生分A、B两组测试的成绩与合格标准的差值(比合格标准多的秒数为正,少的秒数为负).

A 组

﹣1.5

+1.5

﹣1

﹣2

﹣2

B组

+1

+3

﹣3

+2

﹣3


(1)请你估算从55名男生中合格的人数大约是多少?
(2)通过相关的计算,说明哪个组的成绩比较均匀;
(3)至少举出三条理由说明A组成绩好于B组成绩,或找出一条理由来说明B组好于A组.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,等腰三角形ABO的底边OA在x轴上,顶点B在反比例函数y= (x>0)的图象上,当底边OA上的点A在x轴的正半轴上自左向右移动时,顶点B也随之在反比例函数y= (x>0)的图象上滑动,但点O始终位于原点.

(1)如图①,若点A的坐标为(6,0),求点B的坐标;
(2)当点A移动到什么位置时,三角形ABO变成等腰直角三角形,请说明理由;
(3)在(2)中,如图②,△PA1A是等腰直角三角形,点P在反比例函数y= (x>0)的图象上,斜边A1A在x轴上,求点A1的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,1925年数学家莫伦发现的世界上第一个完美长方形它恰能被分割成10个大小不同的正方形请你计算

(1)如果标注1、2的正方形边长分别为1,2,3个正方形的边长= 5个正方形的边长=

(2)如果标注1、2的正方形边长分别为xy10个正方形的边长= .(用含xy的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是边长为a的正方形,点G,E分别是边AB,BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.

(1)证明:∠BAE=FEC;

(2)证明:AGE≌△ECF;

(3)求AEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公园准备修建一块长方形草坪,长为30米,宽为20米.并在草坪上修建如图所示的十字路,已知十字路宽米,回答下列问题:

(1)修建十字路的面积是多少平方米?

(2)草坪(阴影部分)的面积是多少?

(3)如果十字路宽2米,那么草坪(阴影部分)的面积是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.
(1)求证:PB是⊙O的切线;
(2)连接OP,若OP∥BC,且OP=8,⊙O的半径为2 ,求BC的长.

查看答案和解析>>

同步练习册答案