精英家教网 > 初中数学 > 题目详情
如图,在等腰梯形ABCD中,AD∥BC,AB=DC=50,AD=75,BC=135.点P从点B出发沿折线段BA-AD-DC以每秒5个单位长的速度向点C匀速运动;点Q从点C出发沿线段CB方向以每秒3个单位长的速度匀速运动,过点Q向上作射线QK⊥BC,交折线段CD-DA-AB于点E.点P、Q同时开始运动,当点P与点C重合时停止运动,点Q也随之停止.设点P、Q运动的时间是t秒(t>0).
(1)当点P到达终点C时,求t的值,并指出此时BQ的长;
(2)当点P运动到AD上时,t为何值能使PQ∥DC;
(3)设射线QK扫过梯形ABCD的面积为S,分别求出点E运动到CD、DA上时,S与t的函数关系式;(不必精英家教网写出t的取值范围)
(4)△PQE能否成为直角三角形?若能,写出t的取值范围;若不能,请说明理由.
分析:(1)把BA,AD,DC它们的和求出来再除以速度每秒5个单位就可以求出t的值,然后也可以求出BQ的长;
(2)如图1,若PQ∥DC,又AD∥BC,则四边形PQCD为平行四边形,从而PD=QC,用t分别表示QC,BA,AP,然后就可以得出关于t的方程,解方程就可以求出t;
(3)①当点E在CD上运动时,如图2分别过点A、D作AF⊥BC于点F,DH⊥BC于点H,则四边形ADHF为矩形,然后根据已知条件可以证明△ABF≌△DCH,根据全等三角形的性质可以得到FH=AD=75,BF=CH=30,DH=AF=40,再求出tanC=
4
3
,在Rt△CQE中,QE,QC就可以用t表示,这样射线QK扫过梯形ABCD的面积为S也可以用t表示了;
②当点E在DA上运动时,如图1.过点D作DH⊥BC于点H,由①知DH=40,CH=30,又QC=3t,从而ED=QH=QC-CH=3t-30,现在的射线QK扫过梯形ABCD的面积S就是梯形QCDE,可以用t表示了.
(4)△PQE能成为直角三角形.
①当点P在BA(包括点A)上,即0<t≤10时,如图2.过点P作PG⊥BC于点G,则PG=PB•sinB=4t,又有QE=4t=PG,易得四边形PGQE为矩形,此时△PQE总能成为直角三角形
②当点P、E都在AD(不包括点A但包括点D)上,即10<t≤25时,如图1.由QK⊥BC和AD∥BC可知,此时,△PQE为直角三角形,但点P、E不能重合,即5t-50+3t-30≠75,解得t≠
155
8

③当点P在DC上(不包括点D但包括点C),即25<t≤35时,如图3.由ED>25×3-30=45,
可知,点P在以QE=40为直径的圆的外部,故∠EPQ不会是直角.由∠PEQ<∠DEQ,可知∠PEQ一定是锐角.对于∠PQE,
∠PQE≤∠CQE,只有当点P与C重合,即t=35时,如图4,∠PQE=90°,△PQE为直角三角形.
解答:精英家教网解:(1)t=(50+75+50)÷5=35(秒)时,点P到达终点C.(1分)
此时,QC=35×3=105,
∴BQ的长为135-105=30.(2分)

(2)如图1,若PQ∥DC,
又∵AD∥BC,
∴四边形PQCD为平行四边形,
∴PD=QC,
由QC=3t,BA+AP=5t
得50+75-5t=3t,
解得t=
125
8

经检验,当t=
125
8
时,有PQ∥DC.(4分)

(3)①当点E在CD上运动时,如图2.分别过点A、D精英家教网
作AF⊥BC于点F,DH⊥BC于点H,则四边形
ADHF为矩形,且△ABF≌△DCH,从而
FH=AD=75,于是BF=CH=30.
∴DH=AF=40.
又∵QC=3t,
从而QE=QC•tanC=3t•
DH
CH
=4t.
(注:用相似三角形求解亦可)
∴S=S△QCE=
1
2
QE•QC=6t2;(6分)
②当点E在DA上运动时,如图1.过点D作DH⊥BC于点H,由①知DH=40,CH=30,又QC=3t,从而ED=QH=QC-CH=3t-30.
∴S=S梯形QCDE=
1
2
(ED+QC)DH=120t-600.(8分)

(4)△PQE能成为直角三角形.(9分)
当△PQE为直角三角形时,t的取值范围是0<t≤25且t≠
155
8
或t=35.(12分)根据全等三角形的性质
(注:(4)问中没有答出t≠
155
8
或t=35者各扣(1),其余写法酌情给分)
下面是第(4)问的解法,仅供教师参考:
①当点P在BA(包括点A)上,即0<t≤10时,如图2.
过点P作PG⊥BC于点G,则PG=PB•sinB=4t,
又有QE=4t=PG,易得四边形PGQE为矩形,此时△PQE总能成为直角三角形.
②当点P、E都在AD(不包括点A但包括点D)上,即10<t≤25时,如图1.
由QK⊥BC和AD∥BC可知,此时,△PQE为直角三角形,但点P、E不能重合,精英家教网
即5t-50+3t-30≠75,解得t≠
155
8

③当点P在DC上(不包括点D但包括点C),
即25<t≤35时,如图3.由ED>25×3-30=45,
可知,点P在以QE=40为直径的圆的外部,故
∠EPQ不会是直角.精英家教网
由∠PEQ<∠DEQ,可知∠PEQ一定是锐角.
对于∠PQE,∠PQE≤∠CQE,只有当点P与C
重合,即t=35时,如图4,∠PQE=90°,△PQE
为直角三角形.
综上所述,当△PQE为直角三角形时,t的取值范围是0<t≤25且t≠
155
8
或t=35.
点评:此题综合性很强,把图形的变换放在梯形的背景中,利用等腰梯形的性质结合已知条件探究图形的变换,根据变换的图形的性质求出运动时间.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在等腰梯形ABCD中,AB∥DC,AB=8cm,CD=2cm,AD=6cm.点P从点A出发,以2cm/s的速度沿AB向终点B运动;点Q从点C出发,以1cm/s的速度沿CD、DA向终点A运动(P、Q两点中,有一个点运动到终点时,所有运动即终止).设P、Q同时出发并运动了t秒.
(1)当PQ将梯形ABCD分成两个直角梯形时,求t的值;
(2)试问是否存在这样的t,使四边形PBCQ的面积是梯形ABCD面积的一半?若存精英家教网在,求出这样的t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

10、如图,在等腰梯形ABCD中,AD∥BC,AB=DC,E为AD的中点,求证:BE=CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在等腰梯形ABCD中,AD∥BC,AB=DC,点E、F分别在AB、DC上,且BE=3EA,CF=3FD.
求证:∠BEC=∠CFB.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•广州)如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于点E,且EC=3,则梯形ABCD的周长是(  )

查看答案和解析>>

科目:初中数学 来源:中考必备’04全国中考试题集锦·数学 题型:044

如图,在等腰梯形AB∥⊥CD中,BC∥AD,BC=8,AD=20,AB=DC=10,点P从A点出发沿AD边向点D移动,点Q自A点出发沿A→B→C的路线移动,且PQ∥DC,若AP=x,梯形位于线段PQ右侧部分的面积为S.

  

(1)分别求出当点Q位于AB、BC上时,S与x之间的函数关系式,并写出自变量x的取值范围;

(2)当线段PQ将梯形AB∥⊥CD分成面积相等的两部分时,x的值是多少?

(3)当(2)的条件下,设线段PQ与梯形AB∥⊥CD的中位线EF交于O点,那么OE与OF的长度有什么关系?借助备用图说明理由;并进一步探究:对任何一个梯形,当一直线l经过梯形中位线的中点并满足什么条件时,一定能平分梯形的面积?(只要求说出条件,不需要证明)

查看答案和解析>>

同步练习册答案