精英家教网 > 初中数学 > 题目详情
和两条相交直线l1l2都相切的圆的圆心轨迹是________.

 

答案:l1和l2相交构成的四个角的角平分线
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1)解方程:
2
x
-
2
x(x+1)
=1

(2)已知△ABC(如图1),请用直尺(没有刻度)和圆规,作一个平行四边形,使它的三个顶点恰好是△ABC的三个顶点(只需作一个,不必写作法,但要保留作图痕迹)
精英家教网
(3)根据题意,完成下列填空:
如图2,L1与L2是同一平面内的两条相交直线,它们有1个交点,如果在这个平面内,再画第3直线L3,那么这3条直线最多可有
 
个交点;如果在这个平面内再画第4条直线L4,那么这4条直线最多可有
 
个交点.由此我们可以猜想:在同一平面内,6条直线最多可有
 
个交点,n( n为大于1的整数)条直线最多可有
 
个交点(用含n的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

用反证法证明(填空):
两条直线被第三条直线所截.如果同旁内角互补,那么这两条直线平行.
已知:如图,直线l1,l2被l3所截,∠1+∠2=180°.
求证:l1
l2
证明:假设l1
不平行
不平行
l2,即l1与l2交与相交于一点P.
则∠1+∠2+∠P
=
=
180°
(三角形内角和定理)
(三角形内角和定理)

所以∠1+∠2
180°,这与
已知
已知
矛盾,故
假设
假设
不成立.
所以
l1∥l2
l1∥l2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

(1)解方程:数学公式
(2)已知△ABC(如图1),请用直尺(没有刻度)和圆规,作一个平行四边形,使它的三个顶点恰好是△ABC的三个顶点(只需作一个,不必写作法,但要保留作图痕迹)

(3)根据题意,完成下列填空:
如图2,L1与L2是同一平面内的两条相交直线,它们有1个交点,如果在这个平面内,再画第3直线L3,那么这3条直线最多可有______个交点;如果在这个平面内再画第4条直线L4,那么这4条直线最多可有______个交点.由此我们可以猜想:在同一平面内,6条直线最多可有______个交点,n( n为大于1的整数)条直线最多可有______个交点(用含n的代数式表示)

查看答案和解析>>

科目:初中数学 来源:2001年江苏省无锡市中考数学试卷(解析版) 题型:解答题

(1)解方程:
(2)已知△ABC(如图1),请用直尺(没有刻度)和圆规,作一个平行四边形,使它的三个顶点恰好是△ABC的三个顶点(只需作一个,不必写作法,但要保留作图痕迹)

(3)根据题意,完成下列填空:
如图2,L1与L2是同一平面内的两条相交直线,它们有1个交点,如果在这个平面内,再画第3直线L3,那么这3条直线最多可有______个交点;如果在这个平面内再画第4条直线L4,那么这4条直线最多可有______个交点.由此我们可以猜想:在同一平面内,6条直线最多可有______个交点,n( n为大于1的整数)条直线最多可有______个交点(用含n的代数式表示)

查看答案和解析>>

同步练习册答案