精英家教网 > 初中数学 > 题目详情
如图,AN⊥BC,BN=NC,AM⊥CD,CM=MD,∠MAN=80°,∠DBC=30°,∠ADC=(   )。
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,AN是⊙O的直径,四边形ABMN是矩形,与圆相交于点E,AB=15,D是⊙O上的点,DC⊥BM,精英家教网与BM交于点C,⊙O的半径为R=30.
(1)求BE的长.
(2)若BC=15,求
DE
的长.

查看答案和解析>>

科目:初中数学 来源:2012-2013学年浙江湖州第八中学八年级10月月考数学试卷(带解析) 题型:解答题

问题情境:如图①,在直角三角形ABC中,∠BAC=90°,AD⊥BC于点D,可知:∠BAD=∠C(不需要证明);
特例探究:如图②,∠MAN=90°,射线AE在这个角的内部,点B、C在∠MAN的边AM、AN上,且AB="AC," CF⊥AE于点F,BD⊥AE于点D.证明:△ABD≌△CAF;
归纳证明:如图③,点BC在∠MAN的边AM、AN上,点EF在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB="AC," ∠1=∠2=∠BAC.求证:△ABE≌△CAF;
拓展应用:如图④,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,则△ACF与△BDE的面积之和为            .(12分)

查看答案和解析>>

科目:初中数学 来源:2012-2013学年浙江湖州第八中学八年级10月月考数学试卷(解析版) 题型:解答题

问题情境:如图①,在直角三角形ABC中,∠BAC=90°,AD⊥BC于点D,可知:∠BAD=∠C(不需要证明);

  特例探究:如图②,∠MAN=90°,射线AE在这个角的内部,点B、C在∠MAN的边AM、AN上,且AB=AC, CF⊥AE于点F,BD⊥AE于点D.证明:△ABD≌△CAF;

  归纳证明:如图③,点BC在∠MAN的边AM、AN上,点EF在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC, ∠1=∠2=∠BAC.求证:△ABE≌△CAF;

  拓展应用:如图④,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,则△ACF与△BDE的面积之和为             .(12分)

 

查看答案和解析>>

科目:初中数学 来源:2011年3月浙江省宁波市七中九年级月考数学试卷(解析版) 题型:解答题

如图,AN是⊙O的直径,四边形ABMN是矩形,与圆相交于点E,AB=15,D是⊙O上的点,DC⊥BM,与BM交于点C,⊙O的半径为R=30.
(1)求BE的长.
(2)若BC=15,求的长.

查看答案和解析>>

同步练习册答案