精英家教网 > 初中数学 > 题目详情

【题目】如图,已知Rt△ABD中,∠A=90°,将斜边BD绕点B顺时针方向旋转至BC,使BC∥AD,过点C作CE⊥BD于点E.
(1)求证:△ABD≌△ECB;
(2)若∠ABD=30°,BE=3,求弧CD的长.

【答案】
(1)证明:∵∠A=90°,CE⊥BD,

∴∠A=∠BEC=90°.

∵BC∥AD,

∴∠ADB=∠EBC.

∵将斜边BD绕点B顺时针方向旋转至BC,

∴BD=BC.

在△ABD和△ECB中,

∴△ABD≌△ECB


(2)解:∵△ABD≌△ECB,

∴AD=BE=3.

∵∠A=90°,∠BAD=30°,

∴BD=2AD=6,

∵BC∥AD,

∴∠A+∠ABC=180°,

∴∠ABC=90°,

∴∠DBC=60°,

∴弧CD的长为 =2π


【解析】(1)因为这两个三角形是直角三角形,根据旋转的性质得出BC=BD,由AD∥BC推出∠ADB=∠EBC,从而能证明△ABD≌△ECB;(2)由全等三角形的性质得出AD=BE=3.根据30°角所对的直角边等于斜边的一半得出BD=2AD=6,根据平行线的性质求出∠DBC=60°,再代入弧长计算公式求解即可.
【考点精析】根据题目的已知条件,利用弧长计算公式和旋转的性质的相关知识可以得到问题的答案,需要掌握若设⊙O半径为R,n°的圆心角所对的弧长为l,则l=nπr/180;注意:在应用弧长公式进行计算时,要注意公式中n的意义.n表示1°圆心角的倍数,它是不带单位的;①旋转后对应的线段长短不变,旋转角度大小不变;②旋转后对应的点到旋转到旋转中心的距离不变;③旋转后物体或图形不变,只是位置变了.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了尽快实施脱贫致富奔小康宏伟意图,某县扶贫工作队为朝阳沟村购买了一批苹果树苗和梨树苗,已知一棵苹果树苗比一棵梨树苗贵2元,购买苹果树苗的费用和购买梨树苗的费用分别是3500元和2500元.

(1)若两种树苗购买的棵数一样多,求梨树苗的单价;

(2)若两种树苗共购买1100棵,且购买两种树苗的总费用不超过6000元,根据(1)中两种树苗的单价,求梨树苗至少购买多少棵.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某电器超市销售A、B两种不同型号的电风扇,每种型号电风扇的购买单价分别为每台310元,460元.
(1)若某单位购买A,B两种型号的电风扇共50台,且恰好支出20000元,求A,B两种型号电风扇各购买多少台?
(2)若购买A,B两种型号的电风扇共50台,且支出不超过18000元,求A种型号电风扇至少要购买多少台?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图填空:

(1)∵∠1=∠A(已知),

_______________________________

(2)∵∠1=∠D(已知),

________________________________

(3)∵______=∠F(已知),

ACDF______________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等腰Rt△ABC中,∠ABC=90°,AB=BC=4.点P是△ABC内的一点,连接PC,以PC为直角边在PC的右上方作等腰直角三角形PCD.连接AD,若AD∥BC,且四边形ABCD的面积为12,则BP的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中.AB=ACBAC=90EAC边上的一点,延长BAD,使AD=AE,连接DE,CD.

(l)图中是否存在两个三角形全等?如果存在请写出哪两个三角形全等,并且证明;如果不存在,请说明理由;

(2)若∠CBE=30,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有这样一个问题:

计算代数式(其中x≠0)的值后填入下表.并根据表格所反映出的(其中x≠0)的值与x之间的变化规律进行探究.

x

……

0.25

0.5

1

10

100

1000

10000

……

……

……

下面是小东计算代数式(其中x≠0)的值后填入表格,并根据表格进行探究的过程,请补充完整:

x

……

0.25

0.5

1

10

100

1000

10000

……

……

2

1

……

(1)上表是(其中x≠0)与x的几组对应值.直接写出x=10时,求代数式的值;

(2)随着x值的增大,代数式的值有何变化回答增大减少”);

(3)当x值无限增大时,代数式的值无限趋近于一个数,这个数是多少

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法: ①2a+b=0;
②当﹣1≤x≤3时,y<0;
③若(x1 , y1)、(x2 , y2)在函数图象上,当x1<x2时,y1<y2
④9a+3b+c=0
其中正确的是(

A.①②④
B.①②③
C.①④
D.③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A是双曲线y= 在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y= (k<0)上运动,则k的值是

查看答案和解析>>

同步练习册答案