分析 (1)根据等边三角形性质得出AB=BD,BC=BE,∠ABD=∠CBE=60°,求出∠ABE=∠DBC.根据SAS证△ABE≌△DBC,则∠BDC=∠BAE,根据三角形的内角和定理可求出∠AHD=60°;
(2)过点B分别作BM⊥CD,NN⊥AE,垂足为点M,N.根据三角形的面积公式求出AN=AM,根据角平分线性质求出即可.
解答 证明:(1)∵△ABD和△BCE是等边三角形,
∴AB=BD,BC=BE,∠ABD=∠CBE=60°,
∴∠ABE=∠DBC,
在△ABE和△DBC中,
$\left\{\begin{array}{l}{AB=BD}\\{∠ABE=∠DBC}\\{BC=BE}\end{array}\right.$,
∴△ABE≌△DBC,
∴AE=DC,∠BDC=∠BAE,
∵∠BDC+∠ADC=∠BAE+∠ADC=∠BDA=60°,
∴在△ADH中,∠AHD=180°-∠ADC-∠DAB-∠BAE
=180°-∠ADC-(∠DAB+∠BAE)
=180°-60°-60°
=60°;
(2)过点B分别作BM⊥CD,NN⊥AE,垂足为点M,N.
∵由(1)知:△ABE≌△DBC,
∴S△ABE=S△DBC
∴$\frac{1}{2}×CD×BM=\frac{1}{2}×AE×BN$
∴BM=BN
∴点B在∠DHE的平分线上,
∴BH平分∠AHC.
点评 本题考查了等边三角形性质、三角形的面积、全等三角形的性质和判定、三角形的内角和定理的综合运用,证明△ABE≌△DBC是解决问题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | y1>y2 | B. | y1=y2 | ||
C. | y1<y2 | D. | y1与y2的大小不确定 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com