精英家教网 > 初中数学 > 题目详情

如图,在⊙O中,弦AB与半径OC相交于点M,且OM=MC,若AM=1.5,BM=4,则OC的长为


  1. A.
    2数学公式
  2. B.
    数学公式
  3. C.
    2数学公式
  4. D.
    2数学公式
D
分析:过C、O作直径CD,用OC表示出DM、CM的长,然后运用相交弦定理,列方程求解.
解答:解:如图,延长CO,交⊙O于D,则CD为⊙O的直径;
∵OM=MC,
∴OC=2MC=2OM,DM=3OM=3MC;
由相交弦定理得:DM•MC=AM•BM,
即:3MC2=1.5×4,解得MC=
∴OC=2MC=2,故选D.
点评:本题主要考查的是相交弦定理“圆内两弦相交于圆内一点,各弦被这点所分得的两线段的长的乘积相等”.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,在⊙O中,弦AD=BC.求证:AB=CD.

查看答案和解析>>

科目:初中数学 来源: 题型:

4、如图,在⊙O中,弦BC∥半径OA,AC与OB相交于M,∠C=20°,则∠AMB的度数为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在⊙M中,弦AB所对的圆心角为120度,已知圆的半径为2cm,并建立如图所示的直角坐精英家教网标系.
(1)求圆心M的坐标;
(2)求经过A,B,C三点的抛物线的解析式;
(3)设点P是⊙M上的一个动点,当△PAB为Rt△PAB时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在⊙O中,弦AB=BC=CD,且∠ABC=140°,则∠AED=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在⊙O中,弦AB与CD相交于点P,连接AC、DB.
(1)求证:△PAC∽△PDB;
(2)当
AC
DB
为何值时,
S△PAC
S△PDB
=4?

查看答案和解析>>

同步练习册答案