【题目】如图,在平面直角坐标系xOy中,A(-1,0),B(-3,-3),若BC∥OA,且BC=4OA.
(1)求点C的坐标;
(2)求△ABC的面积.
【答案】(1)(1,-3)或(-7,-3)(2)6
【解析】试题分析:(1)由已知条件得出BC=4,点C的纵坐标为-3,BM=3,分两种情况:①当点C在点B的右边时,CM=BC-BM=1,即可得出点C的坐标;
②当点C在点B的左边时,CM=BC+BM=7,即可得出点C的坐标;
(2)由三角形面积公式得出△ABC的面积=BC×OM,即可得出结果.
试题解析:(1)如图所示:∵A(-1,0),
∴OA=1,
∵B(-3,-3),BC∥OA,且BC=4OA,
∴BC=4.
设C(x,-3),
当点C在点B的右边时,此时x-(-3)=4,
解得x=1,
即C(1,-3);
当点C在点B的左边时,此时-3-x=4,
解得x=-7,
即C(-7,-3).
则点C的坐标为(1,-3)或(-7,-3);
(2)△ABC的面积=BC×3=×4×3=6.
科目:初中数学 来源: 题型:
【题目】为了保护环境,某企业决定购买10台污水处理设备;现有A、B两种型号的设备,其中每台的价格、月处理污水量及年消耗费如下表:
A型 | B型 | |
价格(万元/台) | 12 | 10 |
处理污水量(吨/月) | 240 | 200 |
年消耗费(万元/台) | 1 | 1 |
经预算,该企业购买设备的资金不高于105万元。
(1) 请你设计该企业有几种购买方案;
(2)若该企业每月产生的污水量为2040吨,为了节约资金,应选择哪种购买方案?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:
(1)(﹣a2)3+(﹣a3)2﹣a2a3;
(2)(3+a)(3﹣a)+a2;
(3)(x+y﹣3)(x+y+3);
(4)()﹣2+(﹣2)3+|﹣3|﹣(π﹣3.14)0.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC在直角坐标系中,
(1)请写出△ABC各点的坐标;
(2)求出△ABC的面积;
(3)若把△ABC向上平移2个单位,再向右平移2个单位得到△A'B'C',在图中画出△ABC变化位置,并写出A'、B'、C'的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知如图,四边形ABCD的四个顶点的坐标分别为A(0,0)、B(9,0)、C(7,5)、D(2,7).
(1)试计算四边形ABCD的面积;
(2)若将该四边形各顶点的横坐标都加2,纵坐标都加3,其面积怎么变化?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC.
(1)用直尺和圆规作∠A的平分线所在的直线和边BC的垂直平分线(要求:不写作法,保留画图痕迹);
(2)设(1)中的直线和直线交于点P,过点P作PE⊥AB,垂足为点E,过点P作PF⊥AC交AC的延长线于点F.请探究BE和CF的数量关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在学习了二次根式后,小明同学发现有的二次根式可以写成另一个二次根式的平方的形式.
比如: .善于动脑的小明继续探究:
当为正整数时,若,则有,所以, .
请模仿小明的方法探索并解决下列问题:
(1)当为正整数时,若,请用含有的式子分别表示,得: , ;
(2)填空:
- ;
(3)若,且为正整数,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形ABC(顶点是网格线的交点的三角形)的顶点A,C的坐标分别为(, ),(, ).
(1)请在如图所示的网格平面内,作出平面直角坐标系;
(2)请作出关于轴对称的;
(3)写出点的坐标为___ __;
(4)△ABC的面积为__ _ .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图.下列三个条件:①AB∥CD,②∠B=∠C.③∠E=∠F.从中任选两个作为条件,另一个作为结论,编一道数学题,并说明理由.
已知:________;
结论:________;
理由:________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com