【题目】如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.
(1)求证:BE与⊙O相切;
(2)设OE交⊙O于点F,若DF = 2,BC = ,求阴影部分的面积.
【答案】(1)见解析;(2)
【解析】
(1)连接OC,如图,利用切线的性质得∠OCE=90°,再根据垂径定理得到CD=BD,则OD垂中平分BC,所以EC=EB,接着证明△OCE≌△OBE得到∠OBE=∠OCE=90°,然后根据切线的判定定理得到结论;
(2)设⊙O的半径为R,则OD=R–DF=R–2,OB=R,利用勾股定理得(R–2)2+(2)2=R2,解得R=4,然后可根据现有条件推出∠BOD=60°,∠BOC=120°,接着计算出,然后利用阴影部分的面积=S四边形OBEC-S扇形OBC进行计算即可.
解:(1)证明:连接OC,如图,
∵CE为切线,
∴OC⊥CE,
∴∠OCE=90°,
∵OD⊥BC,
∴CD=BD,
即OD垂中平分BC,
∴EC=EB,
在△OCE和△OBE中,
∴△OCE≌△OBE,
∴∠OBE=∠OCE=90°,
∴OB⊥BE,
∴BE与⊙O相切;
(2)解:设⊙O的半径为R,则OD=R–DF=R–2,OB=R,
,
在Rt△OBD中,
∵ OD2+BD2=OB2,
∴(R–2)2+(2)2=R2,
解得R=4,
∴OD=2,OB=4,
∴∠OBD=30°,
∴∠BOD=60°,∠BOC=120°,
∵OB=4,∠BOE=60°,
∴在Rt△OBE中,,
∴S阴影=S四边形OBEC-S扇形OBC
=2××4×-
=.
科目:初中数学 来源: 题型:
【题目】如图,已知直线与双曲线交于 A、B 两点,且点A的横坐标.
(1)求 k 的值;
(2)若双曲线 上点 C 的纵坐标为 3,求△AOC 的面积;
(3)在 y 轴上有一点 M,在直线 AB 上有一点 P,在双曲线上有一点 N,若四边形OPNM 是有一组对角为 60°的菱形,请写出所有满足条件的点 P 的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠AOB=90°,∠OAB=30°,反比例函数的图象过点,反比例函数的图象过点A
(1)求和的值.
(2)过点B作BC∥x轴,与双曲线交于点C,求△OAC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+x+c与直线交于点A和点E,点A在x轴上.抛物线y=ax2+x+c与x轴另一个交点为点B,与y轴交于点C(0,),直线与y轴交于点D.
(1)求点D的坐标和抛物线y=ax2+x+c的函数表达式;
(2)动点P从点B出发,沿x轴以每秒2个单位长度的速度向点A运动,动点Q从点A出发沿射线AE以每秒1个单位长度的速度向点E运动,当点P到达点A时,点P、Q同时停止运动.设运动时间为t秒,连接AC、CQ、PQ.
①当△APQ是以AP为底边的等腰三角形时,求t的值;
②在点P、Q运动过程中,△ACQ的面积记为S1,△APQ的面积记为S2,S=S1+S2,当S=时,请直接写出t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,点E是对角线AC上一动点,连接BE,作CF⊥BE分别交BE于点G,AB于点F.
(1)如图1,若CF恰好平分∠BCA,求证:△CGE≌△CGB;
(2)如图2,若=,取BC的中点H,连接AH交BE于点P,求证:
①AH=3AP;
②BH2=BFBA.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A(n,2),B(1,4)是一次函数y=kx+b和反比例函数y=的图象的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)求△AOB的面积.
(3)直接写出kx+b>时,的取值范围为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为 6 的等边△ABC 中,D 为 AC 上一点,AD=2,P 为 BD 上一点,连接 CP,以 CP 为 边,在 PC 的右侧作等边△CPQ,连接 AQ 交 BD 延长线于 E,当△CPQ 面积最小时,QE=____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,已知∠C=90°,∠B=60°,点D在边BC上,过D作DE⊥AB于E.
(1)连接AD,取AD的中点F,连接CF,EF,判断△CEF的形状,并说明理由
(2)若BD=CD.把△BED绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m=
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则结论:①PA平分∠RPS;②AS=AR;③QP∥AR;④△BRP≌△CSP.其中正确的有( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com