精英家教网 > 初中数学 > 题目详情
如图所示,在四边形ABCD中,对角线AC与BD相交于点O,AD∥BC,∠BAD=∠DCB,若不增加任何字母和辅助线,要使得四边形ABCD是矩形,则还需要增加一个条件是
AC=BD或∠BAD=90°(答案不唯一)
AC=BD或∠BAD=90°(答案不唯一)
分析:根据矩形的判定定理可解,常用的方法有三种:
(1)有一个角是直角的平行四边形是矩形;
(2)有三个角是直角的四边形是矩形;
(3)对角线互相平分且相等的四边形是矩形,据此分析判断.
解答:解:因为四边形ABCD中,AB∥CD,且AB=CD,
所以四边形ABCD是平行四边形,
要判断平行四边形ABCD是矩形,
根据矩形的判定定理,在不增加任何字母与辅助线的情况下,需添加的条件是四边形的一个角是直角或对角线相等.
故答案为:∠BAD=90°或AC=BD.
点评:此题是一道几何结论开放题,全面的考查了矩形的判定定理,可以大大激发学生的思考兴趣,拓展学生的思维空间,培养学生求异、求变的创新精神.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、如图所示,在四边形ABCD中,已知:AB:BC:CD:DA=2:2:3:1,且∠B=90°,求∠DAB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

11、如图所示,在四边形ABCD中,CB=CD,∠ABC=∠ADC=90°,∠BAC=35°,则∠BCD的度数为
110
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在四边形ABCD中,∠BAD=90°,∠B=75°,∠ADC=135°,AB=AD=
2
,E为BC中点,则AE+DE长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

9、如图所示,在四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需要条件(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在四边形ABCD中,∠A=90°,AB=9,BC=20,CD=25,AD=12,求四边形ABCD的面积.

查看答案和解析>>

同步练习册答案