精英家教网 > 初中数学 > 题目详情

【题目】如图,点O为直线AB上一点,∠AOC=110°,OM平分∠AOC,∠MON=90°
(1)求∠BOM的度数;
(2)ON是∠BOC的角平分线吗?请说明理由.

【答案】
(1)解:∵OM平分∠AOC,

∴∠AOM= ∠AOC=55°,

∴∠BOM=∠AOB﹣∠AOM=180°﹣55°=125°


(2)解:ON是∠BOC的角平分线.理由如下:

∵∠MON=90°,∠AOB=180°,

∴∠MOC+∠CON=90°,∠AOM+∠BON=90°,

又由(1)可知∠AOM=∠MOC,

∴∠CON=∠BON,

即ON是∠BOC的角平分线


【解析】(1)根据角的平分线的定义求得∠AOM的度数,然后根据邻补角的定义求得∠BOM的度数;(2)首先根据∠MON=90°,∠AOB=180°,得出∠MOC+∠CON=90°,∠AOM+∠BON=90°,又∠AOM=∠MOC,根据等角的余角相等即可得到ON是∠BOC的角平分线.
【考点精析】根据题目的已知条件,利用角的平分线和角的运算的相关知识可以得到问题的答案,需要掌握从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线;角之间可以进行加减运算;一个角可以用其他角的和或差来表示.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】分解因式:﹣3a2+12_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是抛物线y=ax2+bx+c(a0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:

ab+c0;

3a+b=0;

b2=4a(c﹣n);

一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.

其中正确结论的个数是(

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°,将有一30度角的直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(图中∠OMN=30°,∠NOM=90°)
(1)将图1中的三角板绕点O逆时针旋转至图2,使OM在∠BOC的内部,且恰好平分∠BOC,问直线ON是否平分∠AOC?请说明理由;
(2)将图1中的三角板绕点O按每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角∠AOC,求t;
(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在∠AOC的内部,请探究:∠AOM与∠NOC之间的数量关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若⊙O的直径为2,OP=2,则点P与⊙O的位置关系是:点P在⊙O

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】方程2x+1=5的解是(
A.2
B.﹣2
C.3
D.﹣3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①点A,B,C,D在同一直线上,AB=CD,作CE⊥AD,BF⊥AD,且AE=DF.
(1)证明:EF平分线段BC;
(2)若△BFD沿AD方向平移得到图②时,其他条件不变,(1)中的结论是否仍成立?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】先化简,再求值:(m﹣1)2﹣m(n﹣2)﹣(m﹣1)(m+1),其中m和n是面积为5的直角三角形的两直角边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算下列各题
(1)12+(﹣18)﹣(﹣7)﹣15
(2)3×(﹣2)﹣(﹣1)÷ ×(﹣3)
(3)﹣12010 ×[2﹣(﹣3)2]
(4)|﹣ |÷( )﹣(0.75﹣ )×24.

查看答案和解析>>

同步练习册答案