精英家教网 > 初中数学 > 题目详情

【题目】如图,在直线l上摆放着三个三角形:△ABC、△HFG、△DCE,已知BC=CE,F、G分别是BC、CE的中点,FM∥AC∥HG∥DE,GN∥DC∥HF∥AB.设图中三个四边形的面积依次是S1,S2,S3,若S1+S3=20,则S1=_____,S2=_____

【答案】2 6.

【解析】

根据题意可以证明S2S1两个平行四边形的高相等长是S13S3S2的长相等高是S3这样就可以把S1S3S2来表示从而计算出S2的值

根据正三角形的性质ABC=HFG=DCE=60°,ABHFDCGNACFH交于PCDHG交于Q∴△PFCQCG和△NGE是正三角形

FG分别是BCCE的中点MF=AC=BCPF=AB=BC

又∵BC=CE=CG=GECP=MFCQ=BC=3PFQG=GC=CQ=AB=3CPS1=S2S3=3S2

S1+S3=20S2+3S2=20S2=6S1=2

故答案为:26

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】(题文)如图,抛物线与x轴交于A、B两点,与y轴交于点C,其对称轴交抛物线于点D,交x轴于点E,已知OB=OC=6.

(1)求抛物线的解析式及点D的坐标;

(2)连接BD,F为抛物线上一动点,当∠FAB=∠EDB时,求点F的坐标;

(3)平行于x轴的直线交抛物线于M、N两点,以线段MN为对角线作菱形MPNQ,当点P在x轴上,且PQ=MN时,求菱形对角线MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,∠ABC=90°,ABBC,直线l1l2l3分别通过ABC三点,且l1l2l3.若l1l2的距离为5,l2l3的距离为7,则Rt△ABC的面积为___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线经过点A0),B0),且与y轴相交于点C

1求这条抛物线的表达式

2)求∠ACB的度数;

3设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DEAC,当DCEAOC相似时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方m处,过了2s后,测得小汽车与车速检测仪间距离为m,这辆小汽车超速了吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若将一副三角板按如图所示的方式放置,则下列结论:①;②如果,则有;③如果,则有;④如果,必有;其中正确的有( )

A.①②③B.①②④C.②③④D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有长为22米的篱笆,一面利用墙(墙的最大可用长度为14米),围成中间隔有一道篱笆的长方形花圃,有以下两种围法.

(1)如图1,设花圃的宽AB为x米,面积为y米2,求y与x之间的含函数表达式,并确定x的取值范围;

(2)如图2,为了方便出入,在建造篱笆花圃时,在BC上用其他材料造了宽为1米的两个小门,设花圃的宽AB为a米,面积为S米2,求S与a之间的函数表达式及S的最大值?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB=90°,过点C的直线MNABDAB边上一点,过点DDEBC,交直线MNE,垂足为F,连接CDBE.

(1)求证:CEAD

(2)当DAB中点时,四边形BECD是什么特殊四边形?说明你的理由;

(3)若DAB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某日王老师佩戴运动手环进行快走锻炼,两次锻炼后数据如表.与第一次锻炼相比,王老师第二次锻炼步数增长的百分率是其平均步长减少的百分率的3倍.设王老师第二次锻炼时平均步长减少的百分率为

项目

第一次锻炼

第二次锻炼

步数()

10000

____________

平均步长(/)

0.6

____________

距离()

6000

7020

注:步数×平均步长=距离.

(1)根据题意完成表格填空;

(2)x

(3)王老师发现好友中步数排名第一为24000步,因此在两次锻炼结束后又走了500米,使得总步数恰好为24000步,求王老师这500米的平均步长.

查看答案和解析>>

同步练习册答案