精英家教网 > 初中数学 > 题目详情
如图,△ABC中,AB=AC,DE是AB的垂直平分线,AB=8,BC=4,∠A=36°,则∠DBC=
36°
36°
,△BDC的周长C△BDC=
12
12
分析:根据三角形内角和定理求出∠ABC,再根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,然后根据等边对等角求出∠ABD=∠A,相减即可求出∠DBC,再根据三角形的周长定义求出△BDC的周长=BC+AC,代入数据进行计算即可得解.
解答:解:∵AB=AC,∠A=36°,
∴∠ABC=
1
2
(180°-36°)=72°,
∵DE是AB的垂直平分线,
∴AD=BD,
∴∠ABD=∠A,
∴∠DBC=∠ABC-∠ABD=72°-36°=36°;

△BDC的周长=BC+CD+BD=BC+CD+AD=BC+AC,
∵AB=8,BC=4,AB=AC,
∴△BDC的周长=4+8=12.
故答案为:36°,12.
点评:本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等腰三角形两底角相等的性质,熟记性质是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案