分析 由平行四边形的性质得出AB∥CD,AB=CD,由已知条件得出AM∥CN,AM=CN,证出四边形AMCN是平行四边形,由等腰三角形的性质得出∠CMA=90°,即可得出四边形AMCN是矩形.
解答 证明:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∵M、N分别是AB和CD的中点,
∴AM=BM,AM∥CN,AM=CN,
∴四边形AMCN是平行四边形,
又∵AC=BC,AM=BM,
∴CM⊥AB,
∴∠CMA=90°,
∴四边形AMCN是矩形.
点评 本题考查了矩形的判定、平行四边形的判定与性质、等腰三角形的性质;熟练掌握平行四边形的性质,由等腰三角形的性质得出CM⊥AB是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com