精英家教网 > 初中数学 > 题目详情
如图抛物线y=-
3
3
x2-
2
3
3
x+
3
,x轴于A、B两点,交y轴于点C,顶点为D.
(1)求A、B、C的坐标;
(2)把△ABC绕AB的中点M旋转180°,得到四边形AEBC:
①求E点坐标;
②试判断四边形AEBC的形状,并说明理由;
(3)试探索:在直线BC上是否存在一点P,使得△PAD的周长最小?若存在,请求出P点的坐标;若不存在,请说明理由.
(1)y=-
3
3
x2-
2
3
3
x+
3

令x=0,得y=
3

令y=0,
-
3
3
x2-
2
3
3
x+
3
=0

即x2+2x-3=0,
∴x1=1,x2=-3
∴A,B,C三点的坐标分别为A(-3,0),B(1,0),C(0,
3
)(3分)

(2)①过点E作EF⊥AB于F,
∵C(0,
3
),
∴EF=
3

∵B(1,0),
∴AF=1,
∴OF=OA-AF=3-1=2,
∴E(-2,-
3
)(5分)
②四边形AEBC是矩形.
理由:四边形AEBC是平行四边形,且∠ACB=90°(7分)

(3)存在.(8分)
D(-1,
4
3
3

作出点A关于BC的对称点A′,连接A′D与直线BC交于点P.
则点P是使△PAD周长最小的点.(10分)
∵AO=3,
∴FO=3,
CO=
3

∴A′F=2
3

∴求得A′(3,2
3

过A′、D的直线y=
3
6
x+
3
3
2

过B、C的直线y=-
3
x+
3

两直线的交点P(-
3
7
10
3
7
).(12分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知抛物线的顶点坐标为(
5
2
,-
27
16
)
,且经过点C(1,0),若此抛物线与x轴的另一交点为点B,与y轴的交点为点A,设P、Q分别为AB、OB边上的动点,它们同时分别从点A、O向B点匀速运动,速度均为每秒1个单位,设P、Q移动时间为t(0≤t≤4)
(1)求此抛物线的解析式并求出P点的坐标(用t表示);
(2)当△OPQ面积最大时求△OBP的面积;
(3)当t为何值时,△OPQ为直角三角形?
(4)△OPQ是否可能为等边三角形?若可能请求出t的值;若不可能请说明理由,并改变点Q的运动速度,使△OPQ为等边三角形,求出此时Q点运动的速度和此时t的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

苍南县是浙江省的海洋大县,水产资源十分丰富,春节期间人们对水产品的需求将达到高峰期,某水产品销售公司对历年春节期间的市场行情进行了调查,调查发现某种水产品的每千克售价y1(元)与销售第x天满足关系式y1=2x+30(1≤x≤15且x为整数);而其每千克的成本y2(元)与销售第x天满足函数关系如图所示.
(1)试确定b、c的值;
(2)求出这种水产品每千克的利润y(元)与销售第x天之间的函数关系式;
(3)第几天出售这种水产品每千克的利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图①,在平面直角坐标系中,AB、CD都垂直于x轴,垂足分别为B、D且AD与B相交于E点.已知:A(-2,-6),C(1,-3)
(1)求证:E点在y轴上;
(2)如果有一抛物线经过A,E,C三点,求此抛物线方程.
(3)如果AB位置不变,再将DC水平向右移动k(k>0)个单位,此时AD与BC相交于E′点,如图②,求△AE′C的面积S关于k的函数解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,四边形OABC是矩形,OA=4,OC=8,将矩形OABC沿直线AC折叠,使点B落在D处,AD交OC于E.
(1)求OE的长;
(2)求过O,D,C三点抛物线的解析式;
(3)若F为过O,D,C三点抛物线的顶点,一动点P从点A出发,沿射线AB以每秒1个单位长度的速度匀速运动,当运动时间t(秒)为何值时,直线PF把△FAC分成面积之比为1:3的两部分.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在Rt△ABC中,∠ACB=90°,A、B在x轴上,A(-1,0),C(0,-2),B在x轴正半轴上,求经过A、B、C三点的抛物线,并求此抛物线的顶点坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某农户生产经销一种农副产品,已知这种产品的成本价为20元/千克,市场调查发现,该产品每天的销售量W(千克)与销售价x(元/千克)有如下关系:W=-2x+80,设这种产品每天的销售利润为y(元).
(1)求y与x之间的函数关系式.
(2)当销售价定为多少元时,每天的销售利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某果园有100棵橙子树,每一棵树平均结600个橙子,现准备多种一些橙子树以提高产量.根据经验估计,每多种一棵橙树,平均每棵树就会少结5个橙子.
(1)写出果园橙子的总产量y(个)与增种橙树的棵数x(棵)的函数关系式;
(2)求出当x取何值时y的值最大?y的值最大是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商品的进价为每件50元,售价为每件60元,每个月可卖出200件,如果每件商品的售价上涨1元,则每个月少买10件(每件售价不能高于72元),设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.
(1)求y与x的函数关系式并直接写出自变量x的取值范围;
(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大月利润是多少元?

查看答案和解析>>

同步练习册答案