精英家教网 > 初中数学 > 题目详情
(2013•菏泽)已知:关于x的一元二次方程kx2-(4k+1)x+3k+3=0 (k是整数).
(1)求证:方程有两个不相等的实数根;
(2)若方程的两个实数根分别为x1,x2(其中x1<x2),设y=x2-x1-2,判断y是否为变量k的函数?如果是,请写出函数解析式;若不是,请说明理由.
分析:(1)根据一元二次方程的定义得到k≠0,再计算出判别式得到△=(2k-1)2,根据k为整数和非负数的性质得到△>0,则根据判别式的意义即可得到结论;
(2)根据根与系数的关系得x1+x2=
4k+1
k
,x1•x2=
3k+3
k
,则根据完全平方公式变形得
(x1-x22=(x1+x22-4x1•x2=
(4k+1)2
k2
-
12k+12
k
=
(2k-1)2
k2
=(2-
1
k
2
由于k为整数,则2-
1
k
>0,所以x2-x1=2-
1
k
,则y=2-
1
k
-2=-
1
k
解答:(1)证明:根据题意得k≠0,
∵△=(4k+1)2-4k(3k+3)=4k2-4k+1=(2k-1)2
而k为整数,
∴2k-1≠0,
∴(2k-1)2>0,即△>0,
∴方程有两个不相等的实数根;
(2)解:y是变量k的函数.
∵x1+x2=
4k+1
k
,x1•x2=
3k+3
k

∴(x1-x22=(x1+x22-4x1•x2=
(4k+1)2
k2
-
12k+12
k
=
(2k-1)2
k2
=(2-
1
k
2
∵k为整数,
∴2-
1
k
>0,
而x1<x2
∴x2-x1=2-
1
k

∴y=2-
1
k
-2
=-
1
k
(k≠0的整数),
∴y是变量k的函数.
点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=-
b
a
,x1•x2=
c
a
.也考查了一元二次方程的根的判别式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•菏泽)已知b<0时,二次函数y=ax2+bx+a2-1的图象如下列四个图之一所示.根据图象分析,a的值等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•菏泽)我们规定:将一个平面图形分成面积相等的两部分的直线叫做该平面图形的“面线”,“面线”被这个平面图形截得的线段叫做该图形的“面径”(例如圆的直径就是它的“面径”).已知等边三角形的边长为2,则它的“面径”长可以是
2
(或介于
2
3
之间的任意两个实数)
2
(或介于
2
3
之间的任意两个实数)
(写出1个即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•菏泽)(1)已知m是方程x2-x-2=0的一个实数根,求代数式(m2-m)(m-
2
m
+1)
的值.
(2)如图,在平面直角坐标系xOy中,一次函数y=-x的图象与反比例函数y=
k
x
的图象交于A、B两点.
①根据图象求k的值;
②点P在y轴上,且满足以点A、B、P为顶点的三角形是直角三角形,试写出点P所有可能的坐标.

查看答案和解析>>

同步练习册答案