【题目】如图,在Rt△ABC中,∠ACB=90°,点D在AC上,DE⊥AB于点E,且CD=DE.点F在BC上,连接EF,AF,若∠CEF=45°,∠B=2∠CAF,BF=2,则AB的长为_____.
【答案】10
【解析】
以AC为轴将△ACF翻至△ACK,在AB边上截取BL=BF=2,设CF=x,则EL=CK=x,分别用含x的式子表示出Rt△ABC中的三边长,根据勾股定理列方程,解得x值,则可得答案.
解:如图,以AC为轴将△ACF翻至△ACK,在AB边上截取BL=BF=2
∵∠ACB=90°,DE⊥AB
∴∠BCE+∠DCE=90°,∠BEC+∠DEC=90°
∵CD=DE
∴∠DCE=∠DEC
∴∠BCE=∠BEC
∴BC=BE
∵BF=BL=2
∴EL=CF
设CF=x,则EL=CK=x
∴BK=2x+2,BC=BE=x+2
设∠B=2∠CAF=2α
则∠CAK=α,∠K=90°﹣α
∴∠KAB=180°﹣2α﹣(90°﹣α)=90°﹣α
∴∠K=∠KAB
∴BA=BK=2x+2
在△CBL和△EBF中
∴△CBL≌△EBF(SAS)
∴∠BCL=∠BEF
又∵∠CEF=45°,∠BCE=∠BEC
∴∠ECL=∠CEF=45°
∴∠ALC=180°﹣45°﹣45°﹣∠BEF=90°﹣∠BEF
∵∠ACL=90°﹣∠BCL,∠BCL=∠BEF
∴∠ALC=∠ACL
∴AC=AL=2x
在Rt△ABC中,由勾股定理得:
(x+2)2+(2x)2=(2x+2)2
解得x=4或x=0(舍)
∴AB=10
故答案为:10.
科目:初中数学 来源: 题型:
【题目】某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.
(1)求出y与x的函数关系式;
(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?
(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在矩形ABCD中,AB=8,AD=12,M是AD边的中点,P是AB边上的一个动点(不与A、B重合),PM的延长线交射线CD于Q点,MN⊥PQ交射线BC于N点。
(1)若点N在BC之间时,如图:
①求证:∠NPQ=∠PQN;
②请问是否为定值?若是定值,求出该定值;若不是,请举反例说明;
(2)当△PBN与△NCQ的面积相等时,求AP的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程数.“燃油效率”越高表示汽车每消耗1升汽油行驶的里程数越多;“燃油效率”越低表示汽车每消耗1升汽油行驶的里程数越少.如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列说法中,正确的是( )
A. 以相同速度行驶相同路程,三辆车中,甲车消耗汽油最多
B. 以低于80 km/h的速度行驶时,行驶相同路程,三辆车中,乙车消耗汽油最少
C. 以高于80 km/h的速度行驶时,行驶相同路程,丙车比乙车省油
D. 以80 km/h的速度行驶时,行驶100公里,甲车消耗的汽油量约为10升
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,若点P和点关于y轴对称,点和点关于直线l对称,则称点是点P关于y轴,直线l的二次对称点.
如图1,点.
若点B是点A关于y轴,直线:的二次对称点,则点B的坐标为______;
若点是点A关于y轴,直线:的二次对称点,则a的值为______;
若点是点A关于y轴,直线的二次对称点,则直线的表达式为______;
如图2,的半径为若上存在点M,使得点是点M关于y轴,直线:的二次对称点,且点在射线上,b的取值范围是______;
是x轴上的动点,的半径为2,若上存在点N,使得点是点N关于y轴,直线:的二次对称点,且点在y轴上,求t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某水果商贩用600元购进了一批水果,上市后销售非常好,商贩又用1400元购进第二批这种水果,所购水果数量是第一批购进数量的2倍,但每箱进价多了5元.
(1)求该商贩第一批购进水果每箱多少元;
(2)由于储存不当,第二批购进的水果中有10%腐坏,不能售卖,该商贩将两批水果按同一价格全部销售完毕后获利不低于800元,求每箱水果的售价至少是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】今年5月12日是“母亲节”,某校开展“感恩母亲,做点家务”活动为了了解同学们在母亲节这一天做家务情况,学校随机抽查了部分同学,并用得到的数据制成如下不完整的统计表:
做家务时间(小时) | 人数 | 所占百分比 |
组:0.5 | 15 | 30% |
组:1 | 31 | 62% |
组:1.5 | 4% | |
组:2 | 2 | |
合计 | 100% |
(1)统计表中的__________,__________;
(2)小君计算被抽查同学做家务时间的平均数是这样的:
第一步:计算平均数的公式是,
第二步:该问题中,,,;
第三步:(小时)
小君计算的过程正确吗?如果不正确,请你计算出正确的做家务时间的平均数;
(3)现从,两组中任选2人,求这2人都在组中的概率(用树形图法或列表法).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,O为原点,点A(0,10),点B(m,0),且m>0,把△AOB绕点A逆时针旋转90°,得到△ACD,点O,B旋转后的对应点分别为点C,D.
(1)点C的坐标为 ;
(2)①设△BCD的面积为S,用含m的代数式表示S,并直接写出m的取值范围;
②当S=12时,请直接写出点B的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com