精英家教网 > 初中数学 > 题目详情
1.如图,在△ABC中,按如下步骤作图:
①以点A为圆心,AB长为半径画弧;
②以点C为圆心,CB长为半径画弧,两弧相交于点D;
③连接BD,与AC交于点E,连接AD、CD;
(1)求证:∠BAE=∠DAE;
(2)当AB=BC时,猜想四边形ABCD是什么四边形,并证明你的结论;
(3)当AC=8cm,BD=6cm,现将四边形ABCD通过割补,拼成一个正方形,那么这个正方形的边长是多少?

分析 (1)由SSS证明△ABC≌△ADC,得出对应角相等即可;
(2)证出AB=BC=DC=AD,即可得出结论;
(3)由等腰三角形的性质得出AC⊥BD,求出四边形ABCD的面积,即可得出拼成的正方形的边长.

解答 (1)证明:在△ABC和△ADC中,$\left\{\begin{array}{l}{AB=AD}&{\;}\\{BC=DC}&{\;}\\{AC=AC}&{\;}\end{array}\right.$,
∴△ABC≌△ADC(SSS),
∴∠BAE=∠DAE;
(2)解:四边形ABCD是菱形,理由如下:
∵AB=AD,BC=DC,AB=BC,
∴AB=BC=DC=AD,
∴四边形ABCD是菱形;
(3)解:∵AB=AD,∠BAE=∠DAE,
∴AC⊥BD,
∴四边形ABCD的面积=$\frac{1}{2}$AC•BD=8×6=24(cm2),
∴拼成的正方形的边长=$\sqrt{24}$=2$\sqrt{6}$(cm).

点评 本题考查了正方形的性质、全等三角形的判定与性质、菱形的判定、等腰三角形的性质;熟练掌握菱形的判定方法,证明三角形全等是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.已知一次函数y=kx+b的图象经过点(1,4)和(2,2).
(1)求这个一次函数;
(2)画出这个函数的图象,并求出它与x轴的交点A、与y轴的交点B;
(3)求出△AOB的面积;
(4)直线AB上是否存在一点C(C与B不重合),使△AOC的面积等于△AOB的面积?若存在,求出点C的坐标;若不存在请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,在△ABC中,AC>AB,以点A为圆心、AB长为半径的弧恰交BC于点D,连接AD,过点B作BE⊥AD,垂足为E.
(1)若AB=10,DE=2,求△ABD的面积;
(2)求证:AC2-AD2=BC•CD.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.在平面直角坐标系xOy中,函数y=$\frac{{k}_{1}}{x}$(k1>0,x>0)、函数y=$\frac{{k}_{2}}{x}$(k2<0,x<0)的图象分别经过?OABC的顶点A、C,点B在y轴正半轴上,AD⊥x轴于点D,CE⊥x轴于点E,若|k1|:|k2|=9:4,则AD:CE的值为(  )
A.4:9B.2:3C.3:2D.9:4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.已知在函数y=kx+b,其中常数k>0、b<0,那么这个函数的图象不经过的象限是(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.在同一平面直角坐标系中,画出下列函数的图象:①y=3x+1;②y=-3x+1.观察图象,回答下列问题.
(1)这两个函数的图象有什么共同特点?
(2)两条直线与y轴的交点坐标分别是什么?它们与函数表达式y=kx+b中的哪个量有关?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.$\sqrt{2}$表示2的算术平方根,$\root{3}{-4}$表示-4的立方根.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,已知抛物线y=ax2+$\frac{5}{2}$x+c经过A(4,0),B(1,0)两点,
(1)求该抛物线的解析式;
(2)在直线AC上方的该抛物线上是否存在一点D,使得△DCA的面积最大?若存在,求出点D的坐标及△DCA面积的最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.某校社团活动开设的体育选修课有:篮球(A),足球(B),排球(C),羽毛球(D),乒乓球(E),每个学生选修其中的一门,学校对某班全班同学的选课情况进行调查统计后制成了以下两个统计图.
(1)请你求出该班的总人数,并补全频数分布直方图;
(2)该班的其中某4个同学,1人选修篮球(A),2人选修足球(B),1人选修排球(C).若要从这4人中选2人,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.

查看答案和解析>>

同步练习册答案