精英家教网 > 初中数学 > 题目详情

【题目】定义:若抛物线的顶点与x轴的两个交点构成的三角形是直角三角形,则这种抛物线被称为:“直角抛物线”.如图,直线lyx+b经过点M(0),一组抛物线的顶点B1(1y1)B2(2y2)B3(3y3),…Bn(nyn) (n为正整数),依次是直线l上的点,第一个抛物线与x轴正半轴的交点A1(x10)A2(x20),第二个抛物线与x轴交点A2(x20)A3(x30),以此类推,若x1d(0d1),当d_____时,这组抛物线中存在直角抛物线.

【答案】

【解析】

由抛物线的对称性可知,所构成的直角三角形必是以抛物线顶点为直角顶点的等腰三角形,所以此等腰三角形斜边上的高等于斜边的一半.又0d1,所以等腰直角三角形斜边的长小于2,所以等腰直角三角形斜边的高一定小于1,即抛物线的定点纵坐标必定小于1

直线lyx+b经过点M(0),则b

∴直线ly

由抛物线的对称性知:抛物线的顶点与x轴的两个交点构成的直角三角形必为等腰直角三角形;

∴该等腰三角形的高等于斜边的一半.

0d1

∴该等腰直角三角形的斜边长小于2,斜边上的高小于1(即抛物线的顶点纵坐标小于1)

x1时,

x2时,

x3时,

x4时,

∴直角抛物线的顶点只有B1B2B3

B1为顶点,由,则

B2为顶点,由,则

B3为顶点,由,则d

综上所述,d的值为时.这组抛物线中存在直角抛物线.

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字012;乙袋中装有3个完全相同的小球,分别标有数字﹣1,﹣20;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M坐标为(xy).

1)用树状图或列表法列举点M所有可能的坐标;

2)求点Mxy)在函数y=﹣x+1的图象上的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与实践:

问题情境:(1)如图1,点E是正方形ABCDCD上的一点,连接BDBE,将∠DBE绕点B顺针旋转90°,旋转后角的两边分别与射线DA交于点F和点G

线段BEBF的数量关系是   

写出线段DEDFBD之间的数量关系,并说明理由;

操作探究:(2)在菱形ABCD中,∠ADC60°,点E是菱形ABCDCD所在直线上的一点,连接BDBE,将∠DBE绕点B顺时针旋转120°,旋转后角的两边分别与射线DA交于点F和点G

如图2,点E在线段DC上时,请探究线段DEDFBD之间的数量关系,写出结论并给出证明.

如图3,点E在线段CD的延长线上时,BE交射线DA于点M,若DEDC2a,直接写出线段FMAG的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在矩形ABCD中,AB2ADECD边上的中点,PBC边上的一点,且BP2CP

1)求证:∠AED=∠BEC

2)判断EB是否平分∠AEC,并说明理由;

3)如图2,连接EP并延长交AB的延长线于点F,连接AP,不添加辅助线,PFB可以由都经过P点的两次变换与PAE组成一个等腰三角形,直接写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料:

小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如.善于思考的小明进行了以下探索:

(其中均为整数),则有

.这样小明就找到了一种把类似的式子化为平方式的方法.

请你仿照小明的方法探索并解决下列问题:

1)当均为正整数时,若,用含的式子分别表示,得:    

2)利用所探索的结论,找一组正整数填空:        

3)若,且均为正整数,求的值?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线与抛物线相交于AB两点,且点A1,-4)为抛物线的顶点,点Bx轴上。

1)求抛物线的解析式;

2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;

3)若点Qy轴上一点,且△ABQ为直角三角形,求点Q的坐标。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知锐角内接于⊙O 于点D,连结AO.

⑴若.

①求证:

②当时,求面积的最大值;

⑵点E在线段OA上,,连接DE,设mn是正数),若,求证:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在四边形ABCD中,ADBC.点ECD边上一点,AEBE分别为∠DAB和∠CBA的平分线.

(1)请你添加一个适当的条件   ,使得四边形ABCD是平行四边形,并证明你的结论;

(2)作线段AB的垂直平分线交AB于点O,并以AB为直径作⊙O(要求:尺规作图,保留作图痕迹,不写作法);

(3)在(2)的条件下,⊙O交边AD于点F,连接BF,交AE于点G,若AE=4,sinAGF=,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若数a使关于x的分式方程=4的解为正数,且使关于y,不等式组的解集为y-2,则符合条件的所有整数a的和为______

查看答案和解析>>

同步练习册答案