A. | k>-1 | B. | k>1且k≠2 | C. | k≠2 | D. | k≥1且k≠2 |
分析 由一元二次方程(k-2)x2+2x-1=0有实数根,则k-2≠0,即k≠2,且△≥0,即△=22-4(k-2)×(-1)=4k-4≥0,然后解两个不等式得到k的取值范围.
解答 解:∵一元二次方程(k-2)x2+2x-1=0有实数根,
∴k-2≠0,即k≠2,
△≥0,即△=22-4(k-2)×(-1)=4k-4≥0,
解得k≥1,
∴k的取值范围是k≥1且k≠2.
故选D.
点评 本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.同时考查了一元二次方程的定义.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com