精英家教网 > 初中数学 > 题目详情

【题目】如图(1)所示是某立式家具(角书橱)的横断面,请你设计一个方案(角书橱高2米,房间高2.6米,所以不必从高度方面考虑方案的设计),按此方案,可使该家具通过图(2)中的长廊搬入房间.在图(3)中把你设计的方案画成草图,并说明按此方案可把家具搬入房间的理由(注:搬运过程中不准拆卸家具,不准损坏墙壁)

【答案】可按方案把家具搬入房间.

【解析】

只要DH的长在1.45米以内,即可顺利通过,构造直角三角形,利用相应的三角函数求得DH长,看是否在1.45米以内即可.

如图,角书橱ABCDE,作AMCD,垂足为M

可知△AFM是等腰直角三角形.

AMFM

AFABBFABBC1.50.52()

AMAFsin45°=2·()

米<1.45米,

故可按方案把家具搬入房间.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知矩形ABCD中,AB=3BC=5P是线段BC上的一动点.

1)请用不带刻度的直尺和圆规,按下列要求作图:(不要求写作法,但保留作图痕迹),在CD边上确定一点E,使得∠DEP+APB=180°;

2)在(1)的条件下,点P从点B移动到点C的过程中,对应点E随之运动,则移动过程中点E经过的总路程长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的半径为2,圆心O在坐标原点,正方形ABCD的边长为2,点AB在第二象限,点CD在⊙O上,且点D的坐标为(02),现将正方形ABCD绕点C按逆时针方向旋转150°,点B运动到了⊙O上点B1处,点AD分别运动到了点A1D1处,即得到正方形A1B1C1D1(点C1C重合);再将正方形A1B1C1D1绕点B1按逆时针方向旋转150°,点A1运动到了⊙O上点A2处,点D1C1分别运动到了点D2C2处,即得到正方形A2B2C2D2(点B2B1重合),,按上述方法旋转2020次后,点A2020的坐标为(  )

A.02B.2+,﹣1

C.(﹣1,﹣1D.1,﹣2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将平行四边形纸片按如图方式折叠,使点重合,点 落到处,折痕为

(1)求证:

(2)连结,判断四边形是什么特殊四边形?证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),抛物线y=ax2+bx+3经过A(-3,0),B(-1,0)两点.

(1)求抛物线的解析式;

(2)设抛物线的顶点为M,直线y=-2x+9y轴交于点C,与直线OM交于点D.现将抛物线平移,保持顶点在直线OD.若平移的抛物线与射线CD(含端点C)只有一个公共点,求它的顶点横坐标的值或取值范围;

(3)如图(2),将抛物线平移,当顶点至原点时,过Q(0,3)作不平行于x轴的直线交抛物线于E,F两点.问在y轴的负半轴上是否存在点P,使△PEF的内心在y轴上.若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, 抛物线轴交于点A(-1,0),顶点坐标(1,n)与轴的交点在(0,2),(0,3)之间(包 含端点),则下列结论:①;②;③对于任意实数m,总成立;④关于的方程有两个不相等的实数根.其中结论正确的个数为  

A. 1 个 B. 2 个 C. 3 个 D. 4 个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探究:已知二次函数经过点.

1)求该函数的表达式;

2)如图所示,点是抛物线上在第二象限内的一个动点,且点的横坐标为,连接.

①求的面积关于的函数关系式;

②求的面积的最大值,并求出此时点的坐标.

拓展:在平面直角坐标系中,点的坐标为的坐标为,若抛物线与线段有两个不同的交点,请直接写出的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,二次函数的图像交轴于两点,交轴于点,连接,已知

1)点的坐标是______

2)若点是抛物线上的任意一点,连接

①当的面积相等时,求点的坐标;

②把沿着翻折,若点与抛物线对称轴上的点重合,直接写出点的横坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标中,菱形ABCO的顶点O在坐标原点,且与反比例函数y的图象相交于Am3),C两点,已知点B22),则k的值为(  )

A. 6B. 6C. 6D. 6

查看答案和解析>>

同步练习册答案