精英家教网 > 初中数学 > 题目详情
6.如图,四边形ABCD为⊙O的内接四边形,若四边形ABCO为平行四边形,则∠ADB=30°.

分析 根据圆内接三角形的性质得到∠ADC+∠ABC=180°,根据平行四边形的性质的∠AOC=∠ABC,根据圆周角定理得到∠ADC=$\frac{1}{2}$∠AOC,计算即可.

解答 解:∵四边形ABCD为⊙O的内接四边形,
∴∠ADC+∠ABC=180°,
∵四边形ABCO为平行四边形,
∴∠AOC=∠ABC,
由圆周角定理得,∠ADC=$\frac{1}{2}$∠AOC,
∴∠ADC+2∠ADC=180°,
∴∠ADC=60°,
∵OA=OC,
∴平行四边形ABCO为菱形,
∴BA=BC,
∴$\widehat{BA}$=$\widehat{BC}$,
∴∠ADB=$\frac{1}{2}$∠ADB=30°,
故答案为:30°.

点评 本题考查的是圆内接三角形的性质、平行四边形的性质、菱形的判定,掌握相关的性质定理和判定定理是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

16.如图,抛物线L:y=-$\frac{1}{2}$(x-t)(x-t+4)(常数t>0)与x轴从左到右的交点为B,A,过线段OA的中点M作MP⊥x轴,交双曲线y=$\frac{k}{x}$(k>0,x>0)于点P,且OA•MP=12.
(1)求k的值;
(2)当t=1时,求AB长,并求直线MP与L对称轴之间的距离;
(3)把L在直线MP左侧部分的图象(含与直线MP的交点)记为G,用t表示图象G最高点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,等腰直角△ABC,∠BAC=90°,点E是边AB上的任意一点(E与A,B两点不重合),过点E作ED⊥CE,过点B作BD⊥BC,BD与ED相交于点D.

(1)当点E是AB边中点时.如图1,CE与DE有怎样的数量关系;
(2)当点E不是AB边中点时.如图2,CE与DE有怎样的数量关,并说明理山;
(3)当点E在AB的延长线上时.如图3.CE与DE有怎样的数量关系.并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图所示,有4张除了正面图案不同,其余都相同的图片.

(1)以上四张图片所示的立体图形中,主视图是矩形的有B,D;(填字母序号)
(2)将这四张图片背面朝上混匀,从中随机抽出一张后放回,混匀后再随机抽出一张.求两次抽出的图片所示的立体图形中,主视图都是矩形的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.计算:(-1)3÷10+22×$\frac{1}{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,在矩形ABCD中,AB=1,BC=2,点E是AD边上一动点(不与点A,D重合 ),过A、E、C三点的⊙O交AB延长线于点F,连接CE、CF.
(1)求证:△DEC∽△BFC;
(2)设DE的长为x,△AEF的面积为y.
①求y关于x的函数关系式,并求出当x为何值时,y有最大值;
②连接AC,若△ACF为等腰三角形,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,在平面直角坐标系中,直线y=2x+4$\sqrt{2}$与坐标轴分别交于A、B两点,点C在x轴上,且OA=OC,点P从A出发沿射线AC方向运动,速度为每秒1个单位长度,设运动时间为t(s).

(1)求点B、C的坐标;
(2)若△OCP的面积为4,求运动时间t的值;
(3)如图2,若∠POQ=90°,且OP=OQ,连接BQ,求运动过程中BQ的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.材料:①1的任何次幂都为1;②-1的奇数次幂为-1;③-1的偶次幂为1;④任何不等于零的数的零次幂都是1,请问当x为何值时,代数式(2x+3)x+2010的值为1?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.火车票上的车次号有两个意义,一是数字越小表示车速越快,1~98次为特快列车,101~198次为直快列车,301~398次为普快列车,401~598次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京.根据以上规定,杭州开往北京的某一直快列车的车次号可能是(  )
A.20B.119C.120D.319

查看答案和解析>>

同步练习册答案