分析 根据圆内接三角形的性质得到∠ADC+∠ABC=180°,根据平行四边形的性质的∠AOC=∠ABC,根据圆周角定理得到∠ADC=$\frac{1}{2}$∠AOC,计算即可.
解答 解:∵四边形ABCD为⊙O的内接四边形,
∴∠ADC+∠ABC=180°,
∵四边形ABCO为平行四边形,
∴∠AOC=∠ABC,
由圆周角定理得,∠ADC=$\frac{1}{2}$∠AOC,
∴∠ADC+2∠ADC=180°,
∴∠ADC=60°,
∵OA=OC,
∴平行四边形ABCO为菱形,
∴BA=BC,
∴$\widehat{BA}$=$\widehat{BC}$,
∴∠ADB=$\frac{1}{2}$∠ADB=30°,
故答案为:30°.
点评 本题考查的是圆内接三角形的性质、平行四边形的性质、菱形的判定,掌握相关的性质定理和判定定理是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 20 | B. | 119 | C. | 120 | D. | 319 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com