【题目】如图,某住宅小区在施工过程中留下了一块空地(图中的四边形ABCD),经测量,在四边形ABCD中,AB=3m,BC=4m,CD=12m,DA=13m,∠B=90°.
(1)△ACD是直角三角形吗?为什么?
(2)小区为美化环境,欲在空地上铺草坪,已知草坪每平方米80元,试问铺满这块空地共需花费多少元?
【答案】(1)△ACD是直角三角形,理由见解析;(2)2882元.
【解析】
(1)先在Rt△ABC中,利用勾股定理可求AC,在△ACD中,易求AC2+CD2=AD2,再利用勾股定理的逆定理可知△ACD是直角三角形,且∠ACD=90°;
(2)分别利用三角形的面积公式求出△ABC、△ACD的面积,两者相加即是四边形ABCD的面积,再乘以80,即可求总花费.
解:(1)如图,连接AC,
在Rt△ABC中,∵AB=3m,BC=4m,∠B=90°,AB2+CB2=AC2
∴AC=5cm,
在△ACD中,AC=5cmCD=12m,DA=13m,
∴AC2+CD2=AD2,
∴△ACD是直角三角形,∠ACD=90°;
(2)∵S△ABC=×3×4=6,S△ACD=
×5×12=30,
∴S四边形ABCD=6+30=36,
费用=36×80=2882(元).
答:铺满这块空地共需花费2882元.
科目:初中数学 来源: 题型:
【题目】下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是( )
A. 甲队员成绩的平均数比乙队员的大
B. 乙队员成绩的平均数比甲队员的大
C. 甲队员成绩的中位数比乙队员的大
D. 甲队员成绩的方差比乙队员的大
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数与反比例函数
的图像相交于点
,与
轴相交于点
.
(1)填空:的值为 ,
的值为 ;
(2)观察反比函数的图像,当
时,请直接写出自变量
的取值范围;
(3)以为边作菱形
,使点
在
轴负半轴上,点
在第二象限内,求点
的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,∠BAE+∠AED=180°,∠1=∠2,那么∠M=∠N(下面是推理过程,请你填空).
解:∵∠BAE+∠AED=180°(已知)
∴ ∥ (同旁内角互补,两直线平行)
∴∠BAE= (两直线平行,内错角相等)
又∵∠1=∠2
∴∠BAE﹣∠1= ﹣
即∠MAE=
∴ ∥ (内错角相等,两直线平行)
∴∠M=∠N(两直线平行,内错角相等)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一块长为22 m,宽为17 m的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300 m2.若设道路宽为x m,根据题意可列出方程为______________________________.
【答案】(22-x)(17-x)=300(或x2-39x+74=0)
【解析】试题分析:把所修的两条道路分别平移到矩形的最上边和最左边,则剩下的草坪是一个长方形,根据长方形的面积公式列方程.设道路的宽应为x米,由题意有(22﹣x)(17﹣x)=300,故答案为:(22﹣x)(17﹣x)=300.
考点:由实际问题抽象出一元二次方程.
【题型】填空题
【结束】
17
【题目】x=1是关于x的一元二次方程x2+mx﹣5=0的一个根,则此方程的另一个根是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(12分)如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的矩形CEFD拼在一起,构成一个大的长方形ABEF.现将小长方形CEFD绕点C顺时针旋转至CE′F′D,旋转角为.
(1)当点D′恰好落在EF边上时,则旋转角α的值为________度;
(2)如图2,G为BC中点,且0°<α<90°,求证:GD′=E′D;
(3)小长方形CEFD绕点C顺时针旋转一周的过程中,是否存在旋转角α,使△DCD′与△CBD′全等?若能,直接写出旋转角α的值;若不能,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com