【题目】某市政府规定:若本市企业按生产成本价提供产品给大学生销售,则政府给该企业补偿补偿额
批发价
生产成本价
销售量
大学生小明投资销售本市企业生产的一种新型节能灯,调查发现,每月销售量
件
与销售单价
元
之间的关系近似满足一次函数:
已知这种节能灯批发价为每件12元,设它的生产成本价为每件m元
(1)当时.
①若第一个月的销售单价定为20元,则第一个月政府要给该企业补偿多少元?
②设所获得的利润为元
,当销售单价定为多少元时,每月可获得最大利润?
(2)物价部门规定,这种节能灯的销售单价不得超过30元今年三月小明获得赢利,此时政府给该企业补偿了920元,若m,x都是正整数,求m的值.
科目:初中数学 来源: 题型:
【题目】如图,函数y=和y=﹣
的图象分别是l1和l2.设点P在l1上,PC⊥x轴,垂足为C,交l2于点A,PD⊥y轴,垂足为D,交l2于点B,则三角形PAB的面积为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了推动课堂教学改革,打造“高效课堂”,我市某中学对该校八年级部分学生就一学期以来“分组合作学习”方式的支持程度进行调查,统计情况如图,请根据图中提供的信息,回答下列问题:
(1)本次调查的八年级部分学生共有______名;请补全条形统计图;
(2)若该校八年级学生共有540人,请你估计该校八年级有多少名学生支持“分组合作学习”方式(含“非常喜欢”和“喜欢”两种情况的学生)?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下列两个等式:2=2×
+1,5
=5×
+1,给出定义如下:我们称使等式ab=ab+1的成立的一对有理数a,b为“共生有理数对”,记为(a,b),如:数对(2,
),(5,
),都是“共生有理数对”.
(1)判断数对(2,1),(3,)是不是“共生有理数对”,写出过程;
(2)若(a,3)是“共生有理数对”,求a的值;
(3)若(m,n)是“共生有理数对”,则(n,m)“共生有理数对”(填“是”或“不是”);说明理由;
(4)请再写出一对符合条件的“共生有理数对”为(注意:不能与题目中已有的“共生有理数对”重复).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,射线上有三点
、
、
,满足
,
,
,点
从点
出发,沿
方向以
秒的速度匀速运动,点
从点
出发在线段
上向点
匀速运动,两点同时出发,当点
运动到点
时,点
、
停止运动.
(1)若点运动速度为
秒,经过多长时间
、
两点相遇?
(2)当在线段
上且
时,点
运动到的位置恰好是线段
的三等分点,
求点的运动速度;
(3)当点运动到线段
上时,分别取
和
的中点
、
,求
的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.
(1)求∠BOD的度数;
(2)试判断OE是否平分∠BOC,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC在平面直角坐标系中的位置如图所示.
(1)作出△ABC关于轴对称的△A1B1C1,并写出△A1B1C1各顶点的坐标;
(2)将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;
(3)观察△A1B1C和△A2B2C2,它们是否关于某直线对称?若是,请用实线条画出对称轴。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读并解决其后的问题:我们将四个有理数、
、
、
写成
的形式,称它为由有理数
、
、
、
组成的二阶矩阵,称
、
、
、
为构成这个矩阵的元素,如由有理数
、2、3、
组成的二阶矩阵是
,
、2、3、
是这个矩阵的元素,当且仅当两个矩阵相同位置上的元素相等时,我们称这两个二阶矩阵相等,下面是两个二阶矩阵的加法运算过程:①
+
=
=
,②
+
=
=
,
(1)通过观察上述例子中矩阵加法运算的规律,可归纳得二阶矩阵的加法运算法则是:两个二阶矩阵相加, .
(2)①计算:
+
;
②若
+
=
,求
的值;
(3)若记A=
,B=
,试依据二阶矩阵的加法法则说明A+B=B+A成立
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(﹣3,m+8),B(n,﹣6)两点.
(1)求一次函数与反比例函数的解析式;
(2)求△AOB的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com