精英家教网 > 初中数学 > 题目详情
11.计算
(1)$\root{3}{-64}$-$\sqrt{9}$+$\sqrt{1-(\frac{4}{5})^{2}}$
(2)$\sqrt{6}(\sqrt{\frac{8}{27}}-5\sqrt{3})÷\sqrt{2}$.

分析 (1)原式利用算术平方根及立方根定义计算即可得到结果;
(2)原式利用二次根式乘除法则计算即可得到结果.

解答 解:(1)原式=-4-3+$\frac{3}{5}$=-6$\frac{2}{5}$;
(2)原式=($\sqrt{\frac{48}{27}}$-5$\sqrt{18}$)÷$\sqrt{2}$=$\frac{2\sqrt{2}}{3}$-15.

点评 此题考查了实数的运算,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

1.通过估算,比较下面各组数的大小:
(1)$\frac{\sqrt{3}-1}{2}$,$\frac{1}{2}$;
(2)$\sqrt{15}$,3.85.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知函数y=y1+y2,其中y1是关于x的正比例函数,y2是关于x的反比例函数,且当x=2时,y=8;当x=4时,y=13,试确定y与x的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,△ABC中,E是AB上一点,且AE:EB=3:4,过点E作ED∥BC,交AC于点D,则△AED与四边形BCDE的面积比是9:40.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,∠1+∠2=180°,∠3=∠B,试判断∠AED与∠C的大小关系,并证明你的结论.
解:∠C与∠AED相等,理由如下:
∵∠1+∠2=180°(已知),∠1+∠DFE=180°(邻补角定义)
∴∠2=∠DFE(同角的补角相等),
∴AB∥EF(内错角相等,两直线平行)
∴∠3=∠ADE(两直线平行,内错角相等)
又∠B=∠3(已知)
∴∠B=∠ADE(等量代换)
∴DE∥BC(同位角相等,两直线平行)
∴∠C=∠AED(两直线平行,同位角相等).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.先化简再求值
(1)[(x-y)2-(x+y)(x-y)]÷2y,其中 x=$\frac{1}{2}$,y=2,
(2)已知x2-2=0,求代数式$\frac{(x-1)^{2}}{{x}^{2}-1}$+$\frac{{x}^{2}}{x+1}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.如图,在△ABC中,OB、OC分别是∠ABC和∠ACB的角平分线,过点O作OE∥AB,OF∥AC,交边BC于点E、F,如果BC=10,那么C△OEF等于10.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,设AD是△ABC的中线,△ABD,△ADC的外心分别为E、F,直线BE与CF交于点G,若DG=$\frac{1}{2}$BC,求证:∠ADG=2∠ACG.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.先化简($\frac{{x}^{2}-2x+1}{{x}^{2}-1}$+$\frac{1}{x}$)÷$\frac{1}{x+1}$,再求值,已知x是正整数,且满足y=$\frac{4}{x-1}$+$\sqrt{2-x}$.

查看答案和解析>>

同步练习册答案