精英家教网 > 初中数学 > 题目详情
6.在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:若y′=$\left\{\begin{array}{l}{y(x≥0)}\\{-y(x<0)}\end{array}\right.$,则称点Q为点P的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(-1,3)的“可控变点”为点(-1,-3).
(1)若点(-1,-2)是一次函数y=x+3图象上点M的“可控变点”,则点M的坐标为(-1,2)
(2)若点P在函数y=-x2+16(-5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是-16≤y′≤16,求实数a的值.

分析 (1)根据“可控变点”的定义即可解决问题.
(2)y=-16时,求出x的值,再根据“可控变点”的定义即可解决问题.

解答 解:(1)根据定义,点M坐标为(-1,2).
故答案为(-1,2).
(2)当y=-16时,x2=32,x=±4$\sqrt{2}$,
∵若点P在函数y=-x2+16(-5≤x≤a)的图象上,其“可控变点”Q的纵坐标y′的取值范围是-16≤y′≤16,
∴a=4$\sqrt{2}$

点评 本题考查二次函数的性质,一次函数的性质等知识,解题的关键是理解题意,属于创新题目,中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

3.若y关于x的函数y=(m-2)x|m|-2+1是一次函数,且其图象不经过第三象限,则m的值为-3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,△ABC外接圆⊙O半径为r,BE⊥AC于E,AD⊥BC于D,BE、AD交于点K,AK=r,求∠BAC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知:△ABC和△DCE中,CA=CB,CD=CE,∠ACB=∠DCE=90°,M、N分别为AB、DE的中点.

(1)如图1,若D、E分别在AC、BC上,直按写出$\frac{MN}{BE}$=$\frac{\sqrt{2}}{2}$;
(2)将图1中的△CDE旋转至如图2的位置时,求$\frac{MN}{BE}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.如图,在点O处测得远处动点P作匀速直线运动,开始位置在A点,一分钟后到达B点,再过一分钟到达C点,测得∠AOB=90°,∠BOC=30°,则tan∠OAB=(  )
A.$\frac{3}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{2\sqrt{3}}}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.在直线y=-x+4032的图象上有点P1、P2、P3…、P2014,点P1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P1、P2、P3…、P2014分别作x轴、y轴的垂线段,构成若干个长方形,如图所示,将图中阴影部分的面积从左至右依次记为S1、S2、S3…、S2014,则S1+S2+S3…+S2014=(  )
A.8056B.8050C.8054D.8052

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,矩形ABCD中,AB=9,AD=3.点E从D向C以每秒1个单位的速度运动,以AE为一边在AE的右下方作正方形AEFG,同时垂直于CD的直线MN也从C向D以每秒2个单位的速度运动,当经过2秒时,直线MN和正方形AEFG开始有公共点.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.在一个边长不超过8厘米的大正方形ABCD中,如图所示,放入3张面积都是20平方厘米的小正方形纸片BEFG、OPNC、IQKJ,已知3张小正方形纸片盖住的总面积为44平方厘米,那么大正方形ABCD和小正方形BEFG的边长之比为(  )
A.5:3B.3:2C.10:7D.8:5

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.计算:$\frac{2}{b}$$\sqrt{a{b}^{5}}$•(-$\frac{3}{2}$$\sqrt{{a}^{3}b}$)÷3$\sqrt{\frac{b}{a}}$.

查看答案和解析>>

同步练习册答案