【题目】某我市花石镇组织10辆汽车装运完A、B、C三种不同品质的湘莲共100吨到外地销售,按计划10辆汽车都要装满,且每辆汽车只能装同一种湘莲,根据下表提供的信息,解答以下问题:
(1)设装运A种湘莲的车辆数为x,装运B种湘莲的车辆数为y,求y与x之间的函数关系式;
(2)如果装运每种湘莲的车辆数都不少于2辆,那么车辆的安排方案有几种?并写出每种安排方案;
(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.
湘莲品种 | A | B | C |
每辆汽车运载量(吨) | 12 | 10 | 8 |
每吨湘莲获利(万元) | 3 | 4 | 2 |
【答案】(1)y=10﹣2x;(2)有3种安排方案:方案一:装A种2辆车,装B种6辆车,装C种2辆车;方案二:装A种3辆车,装B种4辆车,装C种3辆车;方案三:装A种4辆车,装B种2辆车,装C种4辆车;(3)装A种2辆车,装B种6辆车,装C种2辆车,最大利润为344万元.
【解析】
(1)根据题意列式:12x+10y+8(10-x-y)=100,变形后即可得到y=10﹣2x;
(2)根据装运每种水果的车辆数都不少于2辆,x≥2,y≥2,解不等式组即可;
(3)结合题意,设最大利润为W(万元),依题意可列出表示式,W=-28x+400,可知函数为减函数,即可得出当x=2时,W最大.
解:(1)设装A种为x辆,装B种为y辆,则装C种为10﹣x﹣y辆,
由题意得:12x+10y+8(10﹣x﹣y)=100,
∴y=10﹣2x;
(2)10-x-y=10-x-(10-2x)=x,
故装C种湘莲的车也为 x 辆,
∴
解得:2≤x≤4.x为整数,
∴x=2,3,4,
故车辆有3种安排方案,方案如下:
方案一:装A种2辆车,装B种6辆车,装C种2辆车;
方案二:装A种3辆车,装B种4辆车,装C种3辆车;
方案三:装A种4辆车,装B种2辆车,装C种4辆车;
(3)设销售利润为W(万元),则
W=3×12x+4×10×(10﹣2x)+2×8x=﹣28x+400,
∴W是x的一次函数,且x增大时,W减少,
∴x=2时,即方案为:装A种2辆车,装B种6辆车,装C种2辆车,
利润W最大=400﹣28×2=344(万元).
科目:初中数学 来源: 题型:
【题目】如图,已知A、B两点的坐标分别为(―2,0),(0,1),⊙C的圆心坐标为(0,―1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是( )
A. 4 B. C. D. 3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O与BC交于点D,与AC交于点F,过点D作⊙O的切线交AC于E.
(1)求证:AD2=ABAE;
(2)若AD=2,AF=3,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣5,1),B(﹣2,2),C(﹣1,4),请按下列要求画图:
(1)将△ABC先向右平移4个单位长度、再向下平移1个单位长度,得到△A1B1C1,画出△A1B1C1;
(2)画出与△ABC关于原点O成中心对称的△A2B2C2,并直接写出点A2的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线l1:y=x-3与x轴,y轴分别交于点A和点B.
(1)求点A和点B的坐标;
(2)将直线l1向上平移6个单位后得到直线l2,求直线l2的函数解析式;
(3)设直线l2与x轴的交点为M,则△MAB的面积是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=﹣x2+bx+c交y轴于点A(0,4),交x轴于点B(4,0),点P是抛物线上一动点,过点P作x轴的垂线PQ,过点A作AQ⊥PQ于点Q,连接AP.
(1)填空:抛物线的解析式为 ,点C的坐标 ;
(2)点P在抛物线上运动,若△AQP∽△AOC,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是( )
A. 30° B. 60° C. 30°或150° D. 60°或120°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是正方形,△ADF绕着点A顺时旋转90°得到△ABE,若AF=4,AB=7.
(1)求DE的长度;
(2)指出BE与DF的关系如何?并说明由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某食品零售店为食品厂代销一种面包,未售出的面包可以退回厂家.经统计销售情况发现,当这种面包的销售单价为7角时,每天卖出160个.在此基础上.单价每提高1角时,该零售店每天就会少卖出20个面包.设这种面包的销售单价为x角(每个面包的成本是5角).零售店每天销售这种面包的利润为y角.
(1)用含x的代数式分别表示出每个面包的利润与卖出的面包个数;
(2)求x与y之间的函数关系式:
(3)当这种面包的销售单价定为多少时,该零售店每天销售这种面包获得的利润最大?最大利润为多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com