精英家教网 > 初中数学 > 题目详情
精英家教网(1)如图,在等腰梯形ABCD中,AD∥BC,AB∥DE,BC=8,AD=5,求EC的长.
(2)如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm),计算两圆孔中心A和B的距离.
精英家教网
分析:(1)由平行四边形的判定,易得四边形ABED是平行四边形;根据平行四边形的对边相等,可得EC=BC-BE;
(2)根据勾股定理:AC2+BC2=AB2,即可求得.
解答:精英家教网解:
(1)∵AD∥BC,AB∥DE
∴ABED是平行四边形(3分)
∴BE=AD=5(5分)
∴EC=BC-BE=8-5=3(7分)

(2)依题意得:△ABC中,∠C=90°,AC=90,BC=120(3分)
AB=
AC2+BC2
=
902+1202
(5分)
=150(6分)
答:两圆孔中心A和B的距离150mm(7分)
点评:(1)此题考查了梯形的性质、平行四边形的判定与性质,解题的关键是仔细识图;
(2)考查了勾股定理的应用,解题的关键是注意找到直角三角形的三边,准确区分直角边与斜边.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图1,在等腰梯形ABCD中,AB∥CO,E是AO的中点,过点E作EF∥OC交BC于F,AO=4,OC=6,∠AOC=60°.现把梯形ABCO放置在平面直角坐标系中,使点O与原点重合,OC在x轴正半轴上,点A、B在第一象限内.
(1)求点E的坐标;
(2)点P为线段EF上的一个动点,过点P作PM⊥EF交OC于点M,过M作MN∥AO交折线ABC于点N,连接PN.设PE=x.△PMN的面积为S.
①求S关于x的函数关系式;
②△PMN的面积是否存在最大值,若不存在,请说明理由.若存在,求出面积的最大值;
(3)另有一直角梯形EDGH(H在EF上,DG落在OC上,∠EDG=90°,且DG=3,HG∥BC).现在开始操作:固定等腰梯形ABCO,将直角梯形EDGH以每秒1个单位的速度沿OC方向向右移动,直到点D与点C重合时停止(如图2).设运动时间为t秒,运动后的直角梯形为E′D′G′H′;探究:在运动过程中,等腰梯ABCO与直角梯形E′D′G′H′重合部分的面积y与时间t的函数关系式.

查看答案和解析>>

科目:初中数学 来源:2011-2012年湖北宜昌市长阳县八年级上期末复习(一)数学试卷(解析版) 题型:填空题

如图,在等腰梯形ABCD中,AD∥BC,AB=CD,且AC⊥BD,AF是梯 形的 高,梯形面积是49cm2,则AF=      

 

查看答案和解析>>

科目:初中数学 来源:2011年河南省周口市初一下学期平移专项训练 题型:解答题

如图,以Rt△ABO的直角顶点O为原点,OA所在的直线为x轴,OB所在的直线为y轴,建立平面直角坐标系.已知OA=4,OB=3,一动点P从O出发沿OA方向,以每秒1个

单位长度的速度向A点匀速运动,到达A点后立即以原速沿AO返回;点Q从A点出发

沿AB以每秒1个单位长度的速度向点B匀速运动.当Q到达B时,P、Q两点同时停止

运动,设P、Q运动的时间为t秒(t>0).

(1) 试求出△APQ的面积S与运动时间t之间的函数关系式;

(2) 在某一时刻将△APQ沿着PQ翻折,使得点A恰好落在AB边的点D处,如图①.

求出此时△APQ的面积.

(3) 在点P从O向A运动的过程中,在y轴上是否存在着点E使得四边形PQBE为等腰梯

形?若存在,求出点E的坐标;若不存在,请说明理由.

(4) 伴随着P、Q两点的运动,线段PQ的垂直平分线DF交PQ于点D,交折线QB-BO-OP于点F. 当DF经过原点O时,请直接写出t的值.

 

查看答案和解析>>

科目:初中数学 来源:2013届度四川省安岳县七年级第二学期期末教学质量监测数学 题型:解答题

(本题满分6分)如图,在梯形ABCD中,AD∥BC,BD=CD,AB<CD,且∠ABC为

锐角,AD=4,BC=12,点E为BC上一动点。试求:当CE为何值时,四边形ABED是等腰梯

形?

 

 

查看答案和解析>>

科目:初中数学 来源:2011-2012年湖北宜昌市长阳县八年级上期末复习(一)数学试卷(带解析) 题型:填空题

如图,在等腰梯形ABCD中,AD∥BC,AB=CD,且AC⊥BD,AF是梯 形的 高,梯形面积是49cm2,则AF=      

查看答案和解析>>

同步练习册答案