精英家教网 > 初中数学 > 题目详情

如图,已知抛物线与坐标轴交于三点,点的横坐标为,过点的直线轴交于点,点是线段上的一个动点,于点.若,且

(1)求的值
(2)求出点的坐标(其中用含的式子表示):
(3)依点的变化,是否存在的值,使为等腰三角形?

(1)b=,c=3;
(2)B(4,0),P(4﹣4t,3t),Q(4t,0);
(3)当t=时,△PQB为等腰三角形.

解析试题分析:(1)将A、C的坐标代入抛物线中即可求得待定系数的值.
(2)根据抛物线的解析式可求得B点的坐标,即可求出OB,BC的长,在直角三角形BPH中,可根据BP的长和∠CBO三角函数求出PH,BH的长,进而可求出OH的长,也就求出了P点的坐标.Q点的坐标,可直接由直线CQ的解析式求得.
(3)本题要分情况讨论:
①PQ=PB,此时BH=QH=BQ,在(2)中已经求得了BH的长,BQ的长可根据B、Q点的坐标求得,据此可求出t的值.
②PB=BQ,那么BQ=BP=5t,由此可求出t的值.
③PQ=BQ,已经求得了BH的长,可表示出QH的长,然后在直角三角形PQH中,用BQ的表达式表示出PQ,即可用勾股定理求出t的值.
试题解析:(1)已知抛物线过A(﹣1,0)、C(0,3),则有:
,
解得,
因此b=,c=3;
(2)令抛物线的解析式中y=0,则有﹣x2+ x+3=0,
解得x=﹣1,x=4;
∴B(4,0),OB=4,
因此BC=5,
在直角三角形OBC中,OB=4,OC=3,BC=5,
∴sin∠CBO=,cos∠CBO=,
在直角三角形BHP中,BP=5t,
因此PH=3t,BH=4t;
∴OH=OB﹣BH=4﹣4t,
因此P(4﹣4t,3t).
令直线的解析式中y=0,则有0=﹣x+3,x=4t,
∴Q(4t,0);
(3)存在t的值,有以下三种情况
①如图1,当PQ=PB时,
∵PH⊥OB,则QH=HB,
∴4﹣4t﹣4t=4t,
∴t=,
②当PB=QB得4﹣4t=5t,
∴t=,
③当PQ=QB时,在Rt△PHQ中有QH2+PH2=PQ2,
∴(8t﹣4)2+(3t)2=(4﹣4t)2,
∴57t2﹣32t=0,
∴t=,t=0(舍去),
又∵0<t<1,
∴当t=时,△PQB为等腰三角形.
考点:二次函数综合题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

某宾馆有30个房间供游客住宿,当每个房间的房价为每天160元时,房间会全部住满。当每个房间每天的房价每增加10元时,就会有一个房间空闲。宾馆需对游客居住的每个房间每天支出20元的各种费用。根据规定,每个房间每天的房价不得高于260元。
设每个房间的房价每天增加x元(x为10的整数倍)。
(1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;
(2)设宾馆一天的利润为w元,求w与x的函数关系式;
(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

宁波元康水果市场某批发商经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价一元,日销售量将减少20千克.
(1)现要保证每天盈利6000元,同时又要让顾客得到实惠,那么每千克应涨价多少元?
(2)若该批发商单纯从经济角度看,那么每千克应涨价多少元,能使商场获利最多.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,抛物线经过A(-1,0),B(4,0),C(0,-4),⊙M是△ABC的外接圆,M为圆心。

⑴求抛物线的解析式;
⑵求阴影部分的面积;
⑶在正半轴上有一点P,作PQ⊥x轴交BC于Q,设PQ=K,△CPQ的面积为S,求S关于K的函数关系式,并求出S的最大值。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知抛物线y=x2-4x+3,求出它的对称轴和顶点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某服装经营部每天的固定费用为300元,现试销一种成本为每件80元的服装.规定试销期间销售单价不低于成本单价,且获利不得高于35%.经试销发现,每件销售单价相对成本提高x(元)(x为整数)与日均销售量y(件)之间的关系符合一次函数y=kx+b,且当x=10时,y=100;x=20时,y=80.
(1)求一次函数y=kx+b的关系式;
(2)设该服装经营部日均获得毛利润为W元(毛利润=销售收入-成本-固定费用),求W关于x的函数关系式;并求当销售单价定为多少元时,日均毛利润最大,最大日均毛利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在△ABC中,AB=AC=4cm,∠BAC=90°.动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时间为ts,四边形APQC的面积为ycm2

(1)当t为何值时,△PBQ是直角三角形?
(2)①求y与t的函数关系式,并写出t的取值范围;
②当t为何值时,y取得最小值?最小值为多少?
(3)设PQ的长为xcm,试求y与x的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线与x轴交于A(1,0)、B(-4,0)两点,交y轴与C点.

(1)求该抛物线的解析式.
(2)在该抛物线位于第二象限的部分上是否存在点D,使得△DBC的面积S最大?若存在,求出点D的坐标;若不存在,请说明理由.
(3)设抛物线的顶点为点F,连接线段CF,连接直线BC,请问能否在直线BC上找到一个点M,在抛物线上找到一个点N,使得C、F、M、N四点组成的四边形为平行四边形,若存在,请写出点M和点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在2014年“元旦”前夕,某商场试销一种成本为30元的文化衫,经试销发现,若每件按34元的价格销售,每天能卖出36件;若每件按39元的价格销售,每天能卖出21件.假定每天销售件数y(件)是销售价格x(元)的一次函数.
(1)直接写出y与x之间的函数关系式y=                      
(2)在不积压且不考虑其他因素的情况下,每件的销售价格定为多少元时,才能使每天获得的利润P最大?

查看答案和解析>>

同步练习册答案