精英家教网 > 初中数学 > 题目详情
(2002•湘西州)如图,在直角坐标系中,以x轴上一点P(1,0)为圆心的圆与x轴、y轴分别交于A、B、C、D四点,连接CP,∠APC=60度.
(1)求⊙P的半径R;
(2)求A、B、D三点坐标;
(3)若过弧CB的中点Q作⊙P的切线MN交x轴于M,交y轴于N,求直线MN的解析式.

【答案】分析:(1)由图可知⊙P的半径就是CP的长,直角三角形OPC中,有P点的坐标,也就有了PO的长,又已知了∠OPC的度数,因此根据三角形函数的知识可以求出CP的长.
(2)有了圆心P的坐标,有了半径的长,就有了AP,PB的长.根据P的坐标我们可以知道OP的长,那么OA和OB的长就可以求出来了,据此可得出A、B的坐标,在直角三角形OCP中,有OP,PC的长,那么OC的长可以根据勾股定理求出,根据垂径定理,OD=OC,因此D点的坐标也就求出来了.
(3)本题的关键是求出ON,OM的长,连接PQ后,根据Q是BC弧的中点,那么∠CPQ=∠MPQ=60°,因此∠PMQ=30°,MP=2R,(1)中已经求出了R的值,那么MP的值就能求出来了,有P点的坐标,因此可以得出OP的值进而求出OM的长,直角三角形OMN中,∠OMN=30°,MN=2ON,又知道了OM的长,可以根据勾股定理求出ON的长,有了OM,ON的长,M,N的坐标就可以确定,根据M、N的坐标用待定系数法就能求出MN所在直线的解析式.
解答:解:(1)在Rt△POC中,∠APC=60°,
∴∠PCO=30°,PC=2PO=2,
∴⊙P的半径R是2.

(2)∵AP=BP=2,OA=PA-PO=2-1=1,
∴A(-1,0)、B(3,0),

∴D(0,).

(3)连接PQ,
∵Q是的中点,∠APC=60°,∴∠CPQ=∠BPQ=60°.
∵MN切⊙P于Q,
∴PQ⊥MN.
在Rt△PQM中,∠PMQ=30°PM=2PQ=4,
在Rt△MNO中,MN=2ON,
∵MN2=ON2+OM2
∴(2ON)2=ON2+52
∴M(5,0),N(0,),
设直线MN的解析式为y=kx+b,
得方程组是:
解这个方程组得:
所以,直线MN的解析式是:
点评:本题考查了直角三角形,圆与一次函数的综合应用,本题中用直角三角形来求出坐标轴上的线段的长是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源:2002年全国中考数学试题汇编《一次函数》(04)(解析版) 题型:解答题

(2002•湘西州)如图,在直角坐标系中,以x轴上一点P(1,0)为圆心的圆与x轴、y轴分别交于A、B、C、D四点,连接CP,∠APC=60度.
(1)求⊙P的半径R;
(2)求A、B、D三点坐标;
(3)若过弧CB的中点Q作⊙P的切线MN交x轴于M,交y轴于N,求直线MN的解析式.

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《一次函数》(02)(解析版) 题型:解答题

(2002•湘西州)己知一次函数y=3-kx.当x=2时,y=-1
(1)求y与x的函数关系式.
(2)指出此函数的图象不经过哪个象限?

查看答案和解析>>

科目:初中数学 来源:2002年湖南省湘西州中考数学试卷(解析版) 题型:解答题

(2002•湘西州)己知一次函数y=3-kx.当x=2时,y=-1
(1)求y与x的函数关系式.
(2)指出此函数的图象不经过哪个象限?

查看答案和解析>>

科目:初中数学 来源:2002年全国中考数学试题汇编《锐角三角函数》(04)(解析版) 题型:解答题

(2002•湘西州)附加题:(计入总分)己知EF是半径为3cm的⊙O中的一条弦,且EF=4cm.P是⊙O上优弧EF上一动点(与E、F均不重合〕.
(1)求sin∠EPF的值;
(2)问是否存在以E、F、P为顶点的面积最大的三角形,试说明理由.若存在,请求出这个三角形的面积.

查看答案和解析>>

同步练习册答案