精英家教网 > 初中数学 > 题目详情
11.如果(m-2)xn-1+1=0是关于x的一元二次方程,则m、n应满足的条件是n=3,m≠2.

分析 根据一元二次方程的定义得到n-1=2,m-2≠0,易求m、n应满足的条件.

解答 解:∵(m-2)xn-1+1=0是关于x的一元二次方程,
∴n-1=2,m-2≠0,
∴n=3,m≠2,
故答案为n=3,m≠2.

点评 本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.(1)计算:(π-2016)0-(-$\frac{1}{3}$)-2+tan45°;
(2)化简  $\frac{{a}^{2}-1}{a}$÷(a-$\frac{2a-1}{a}$).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,抛物线y=-x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为(1+$\sqrt{2}$,2)或(1-$\sqrt{2}$,2).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.等腰△ABC中,AB=AC,AD⊥BC于点D,点E落在了AD上,连接CE,将线段EC绕点E顺时针旋转一定的角度,使得点C落在了点F处,且满足∠CEF=∠CAB,连接BF.

(1)若∠BAC=60°(如图1),则线段AE与BF的数量关系为AE=BF;
(2)若∠BAC=90°(如图2),求证:BF=$\sqrt{2}$AE;(写出证明过程)
(3)在(2)的条件下(备用图),连接FD并延长分别交CE、CA于点M、N,BC=8,$FD=\sqrt{10}DE$,求△CMN的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知方程(m-1)x|m|+7=0是关于x的一元一次方程
(1)求m的值,并写出这个方程.
(2)判断x=-1.5,x=0,x=3.5是否是方程的解.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.若方程3xm+2-5y3-n=0是关于x、y的二元一次方程,则m+n=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.如图,点C为AB中点,AD∥CE,AD=CE.求证:∠D=∠E.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知抛物线l1:y=-x2+2x+3与x轴交于点A、B(点A在点B左边),与y轴交于点C,抛物线l2经过点A,与x轴的另一个交点为E(4,0),与y轴交于点D(0,-2).
(1)求抛物线l2的解析式;
(2)点P为线段AB上一动点(不与A、B重合),过点P作y轴的平行线交抛物线l1于点M,交抛物线l2于点N.
①当四边形AMBN的面积最大时,求点P的坐标;
②当CM=DN≠0时,求点P的坐标.

查看答案和解析>>

同步练习册答案