精英家教网 > 初中数学 > 题目详情
在平面直角坐标系中,D(0,-3),M(4,-3),直角三角形ABC的边与x轴分别交于O、G两点,与直线DM分别交于E、F点.
(1)将直角三角形ABC如图1位置摆放,请写出∠CEF与∠AOG之间的等量关系:
∠CEF=90°+∠AOG
∠CEF=90°+∠AOG

(2)将直角三角形ABC如图2位置摆放,N为AC上一点,∠NED+∠CEF=180°,请写出∠NEF与∠AOG之间的等量关系,并说明理由.
分析:(1)作CP∥x轴,利用D、M点的坐标可得到DM∥x轴,则CP∥DM∥x轴,根据平行线的性质有∠AOG=∠1,∠2+∠CEF=180°,然后利用∠1+∠2=90°得到∠AOG+∠180°-∠CEF=90°,再整理得∠CEF=90°+∠AOG;
(2)作CP∥x轴,则CP∥DM∥x轴,根据平行线的性质得∠AOG=∠1,∠2+∠CEF=180°,由于∠NED+∠CEF=180°,所以∠2=∠NED,然后利用∠1+∠2=90°即可得到∠AOG+∠NEF=90°.
解答:解:(1)∠CEF与∠AOG之间的等量关系为:∠CEF=90°+∠AOG.
作CP∥x轴,如图1,
∵D(0,-3),M(4,-3),
∴DM∥x轴,
∴CP∥DM∥x轴,
∴∠AOG=∠1,∠2+∠CEF=180°,
∴∠2=180°-∠CEF,
∵∠1+∠2=90°,
∴∠AOG+∠180°-∠CEF=90°,
∴∠CEF=90°+∠AOG;
故答案为∠CEF=90°+∠AOG;
(2)∠AOG+∠NEF=90°.理由如下:
作CP∥x轴,如图2,
∵CP∥DM∥x轴,
∴∠AOG=∠1,∠2+∠CEF=180°,
而∠NED+∠CEF=180°,
∴∠2=∠NED,
∵∠1+∠2=90°,
∴∠AOG+∠NEF=90°.
点评:本题考查了平行线的判定与性质:平行线于同一条直线的两直线平行;两直线平行,同位角相等;两直线平行,同旁内角互补.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、在平面直角坐标系中,点P到x轴的距离为8,到y轴的距离为6,且点P在第二象限,则点P坐标为
(-6,8)

查看答案和解析>>

科目:初中数学 来源: 题型:

10、在平面直角坐标系中,点P1(a,-3)与点P2(4,b)关于y轴对称,则a+b=
-7

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,有A(2,3)、B(3,2)两点.
(1)请再添加一点C,求出图象经过A、B、C三点的函数关系式.
(2)反思第(1)小问,考虑有没有更简捷的解题策略?请说出你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,开口向下的抛物线与x轴交于A、B两点,D是抛物线的顶点,O为精英家教网坐标原点.A、B两点的横坐标分别是方程x2-4x-12=0的两根,且cos∠DAB=
2
2

(1)求抛物线的函数解析式;
(2)作AC⊥AD,AC交抛物线于点C,求点C的坐标及直线AC的函数解析式;
(3)在(2)的条件下,在x轴上方的抛物线上是否存在一点P,使△APC的面积最大?如果存在,请求出点P的坐标和△APC的最大面积;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、在平面直角坐标系中,把一个图形先绕着原点顺时针旋转的角度为θ,再以原点为位似中心,相似比为k得到一个新的图形,我们把这个过程记为【θ,k】变换.例如,把图中的△ABC先绕着原点O顺时针旋转的角度为90°,再以原点为位似中心,相似比为2得到一个新的图形△A1B1C1,可以把这个过程记为【90°,2】变换.
(1)在图中画出所有符合要求的△A1B1C1
(2)若△OMN的顶点坐标分别为O(0,0)、M(2,4)、N(6,2),把△OMN经过【θ,k】变换后得到△O′M′N′,若点M的对应点M′的坐标为(-1,-2),则θ=
0°(或360°的整数倍)
,k=
2

查看答案和解析>>

同步练习册答案