精英家教网 > 初中数学 > 题目详情

【题目】如图,⊙O中,PC切⊙O于点C,连PO交于⊙OA、B,点F是⊙O上一点,连PF,CDAB于点D,AD=2,CD=4,则PF:DF的值是(

A. 2 B. C. 5:3 D. 4:3

【答案】C

【解析】

连接AC、OC、OF、BC.由ADC∽△CDB,推出,求出DB、OA、OD,由ODC∽△OCP,推出,推出OC2=ODOP,推出OF2=ODOP,即,由∠DOF=POF,推出DOF∽△FOP,可得.

连接AC、OC、OF、BC.如图所示:

AB是直径,

∴∠ACB=90°,

CDAB,

∴∠ADC=BDC=90°,

∴∠ACD+CAD=90°,ACD+BCD=90°,

∴∠CAD=BCD,

∴△ADC∽△CDB,

DB=8,OA=OB=5,OD=3,

PC是切线,

OCPC,

∵∠DOC=POC,ODC=OCP,

∴△ODC∽△OCP,

OC2=ODOP,

OF2=ODOP,

∵∠DOF=POF,

∴△DOF∽△FOP,

故选:C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】正方形ABCD和正方形AEFG的边长分别为2B在边AGD在线段EA的延长线上连接BE

(1)如图1,求证DGBE

(2)如图2,将正方形ABCD绕点A按逆时针方向旋转当点B恰好落在线段DG上时求线段BE的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB=90°,AO是△ABC的角平分线.以O为圆心,OC为半径作⊙O.

(1)求证:AB是⊙O的切线.

(2)已知AO交⊙O于点E,延长AO交⊙O于点D,tanD=,求的值.

(3)(3分)在(2)的条件下,设⊙O的半径为3,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“共建环保模范城,共享绿色新重庆”,市政府强力推进城市生活污水处理、生活垃圾处理设施建设改造工作.为此,某化工厂在一期工程完成后购买了4台甲型和5台乙型污水处理设备,共花费资金102万元,且每台乙型设备的价格比每台甲型设备价格少3万元.已知每台甲型设备每月能处理污水240吨,每台乙型设备每月能处理污水180吨.今年该厂二期工程即将完成,产生的污水将大大增加,于是该厂决定再购买甲、乙两型设备共12台用于二期工程的污水处理,预算本次购买资金不超过129万元,预计二期工程完成后每月将产生不少于2220吨污水.

1)请你计算每台甲型设备和每台乙型设备的价格各是多少万元?

2)请你求出用于二期工程的污水处理设备的所有购买方案;

3)请你说明在(2)的所有方案中,哪种购买方案的总花费最少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,PA,PB分别与O相切于A,B两点,ACB=60°.

(1)求P的度数;

(2)若O的半径长为4cm,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y= (k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=,点B的坐标为(m,-2).

(1)求△AHO的周长;

(2)求该反比例函数和一次函数的解析式.

【答案】(1)△AHO的周长为12(2) 反比例函数的解析式为y=一次函数的解析式为y=-x+1.

【解析】试题分析: 1)根据正切函数,可得AH的长,根据勾股定理,可得AO的长,根据三角形的周长,可得答案;

2)根据待定系数法,可得函数解析式.

试题解析:(1)由OH=3tan∠AOH=,得

AH=4.即A-43).

由勾股定理,得

AO==5

△AHO的周长=AO+AH+OH=3+4+5=12

2)将A点坐标代入y=k≠0),得

k=-4×3=-12

反比例函数的解析式为y=

y=-2时,-2=,解得x=6,即B6-2).

AB点坐标代入y=ax+b,得

解得

一次函数的解析式为y=-x+1

考点:反比例函数与一次函数的交点问题.

型】解答
束】
21

【题目】如图,AB为⊙O的直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC,过点C作CE⊥DB交DB的延长线于点E,直线AB与CE相交于点F.

(1)求证:CF为⊙O的切线;

(2)填空:当∠CAB的度数为________时,四边形ACFD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB⊙O的弦,OP⊥OAAB于点P,过点B的直线交OP的延长线于点C,且CP=CB

1)求证:BC⊙O的切线;

2)若⊙O的半径为OP=1,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A在反比例函数y=(x>0)的图象上,作Rt△ABC,边BC在x轴上,点D为斜边AC的中点,连结DB并延长交y轴于点E,若△BCE的面积为4,则k的值是(  )

A. 2 B. 4 C. 6 D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知为正方形的中心,分别延长到点 到点,使 ,连结,将△绕点逆时针旋转角得到△(如图2).连结

(Ⅰ)探究的数量关系,并给予证明;

(Ⅱ)当 时,求:

的度数;

的长度.

查看答案和解析>>

同步练习册答案