精英家教网 > 初中数学 > 题目详情
如图,⊙O是边长为1的正方形ABCD的外接圆,P为弧AD上的不同于A、D的任意一点,则PA2+PB2+PC2+PD2的值为(  )
分析:连接AC、BD,先由正方形的性质得出∠ADC=∠BCD=90°,再根据90°的圆周角所对的弦是直径得出AC与BD是直径,由直径所对的圆周角是直角得出∠APC=∠BPD=90°,然后根据勾股定理得出PA2+PC2=AC2,PB2+PD2=BD2,从而求出结果.
解答:解:连接AC、BD.
∵ABCD是正方形,
∴∠ADC=∠BCD=90°,
∴AC与BD是直径,
∴∠APC=∠BPD=90°,
∴PA2+PC2=AC2,PB2+PD2=BD2
又∵正方形ABCD的边长为1,
∴AC=BD=
2

∴PA2+PB2+PC2+PD2=AC2+BD2=4.
故选B.
点评:本题主要考查了正多边形与圆,勾股定理,圆周角定理,综合性较强,难度中等.根据圆周角定理得出∠APC=∠BPD=90°是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

14、如图,O是边长为6的等边三角形ABC内的任意一点,且OD∥BC,交AB于点D,OF∥AB,交AC于F,OE∥AC,交BC于E.则OD+OE+OF的值(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△AOB是边长为5的等边三角形,则A,B两点的坐标分别是A
 
,B
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,△ABC是边长为2
3
的等边三角形,点E、F分别在CB和BC的延长线上,且∠EAF=120°,设BE=x,CF=y.求y与x的函数关系式,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•湘潭)如图,△ABC是边长为3的等边三角形,将△ABC沿直线BC向右平移,使B点与C点重合,得到△DCE,连接BD,交AC于F.
(1)猜想AC与BD的位置关系,并证明你的结论;
(2)求线段BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AO是边长为2的等边△ABC的高,点D是AO上的一个动点(点D不与点A、O重合),以CD为一边在AC下方作等边△CDE,连结BE并延长,交AC的延长线于点F.
(1)求证:△ACD≌△BCE;
(2)当△CEF为等腰三角形时:
①求∠ACD的度数;
②求△CEF的面积.

查看答案和解析>>

同步练习册答案