(本小题满分12分)如图, 内接于,的平分线与交于点,与交于点,延长,与的延长线交于点,连接是的中点,连结.
(1)判断与的位置关系,写出你的结论并证明;
(2)求证:;
(3)若,求的面积.
(1)猜想:.
证明:如图,连结OC、OD.
∵,G是CD的中点,
∴由等腰三角形的性质,有.
(2)证明:∵AB是⊙O的直径,∴∠ACB=90°.
而∠CAE=∠CBF(同弧所对的圆周角相等).
在Rt△ACE和Rt△BCF中,
∵∠ACE=∠BCF=90°,AC=BC,∠CAE=∠CBF,
∴Rt△ACE≌Rt△BCF (ASA)
∴.
(3)解:如图,过点O作BD的垂线,垂足为H.则H为BD的中点.
∴OH=AD,即AD=2OH.
又∠CAD=∠BADCD=BD,∴OH=OG.
在Rt△BDE和Rt△ADB中,
∵∠DBE=∠DAC=∠BAD,
∴Rt△BDE∽Rt△ADB
∴,即
∴
又,∴.
∴ … ①
设,则,AB=.
∵AD是∠BAC的平分线,
∴.
在Rt△ABD和Rt△AFD中,
∵∠ADB=∠ADF=90°,AD=AD,∠FAD=∠BAD,
∴Rt△ABD≌Rt△AFD(ASA).
∴AF=AB=,BD=FD.
∴CF=AF-AC=
在Rt△BCF中,由勾股定理,得
…②
由①、②,得.
∴.解得或(舍去).
∴
∴⊙O的半径长为.
∴
解析
科目:初中数学 来源: 题型:
(本小题满分12分)如图所示,在梯形中,,,以为直径的与相切于.已知,边比大6.
(1)求边、的长.
(2)在直径上是否存在一动点,使以、、为顶点的三角形与相似?若存在,求出的长;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com