精英家教网 > 初中数学 > 题目详情

图1是一张Rt△ABC纸片,如果用两张相同的这种纸片恰好能拼成一个正三角形(图2),那么在Rt△ABC中,sin∠B的值是________.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,Rt△AOB是一张放在平面直角坐标系中的三角形纸片,点O与原点重合,点A在x轴正半轴上,点B在y轴正半轴上,OB=2
3
,∠OAB=30°,将Rt△AOB折叠,使OB边落在AB边上,点O与点D重合,折精英家教网痕为BE.
(1)求点E和点D的坐标;
(2)求经过O、D、A三点的二次函数图象的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,Rt△ABC是一张放在平面直角坐标系中的纸片,点C与原点O重合,点A在x轴的正半轴上,点B在y轴的正半轴上,已知OA=3,OB=4.将纸片的直角部分翻折,使点C落在精英家教网AB边上,记为D点,AE为折痕,E在y轴上.
(1)在如图所示的直角坐标系中,求E点的坐标及AE的长.
(2)线段AD上有一动点P(不与A、D重合)自A点沿AD方向以每秒1个单位长度向D点作匀速运动,设运动时间为t秒(0<t<3),过P点作PM∥DE交AE于M点,过点M作MN∥AD交DE于N点,求四边形PMND的面积S与时间t之间的函数关系式,当t取何值时,S有最大值?最大值是多少?
(3)当t(0<t<3)为何值时,A、D、M三点构成等腰三角形?并求出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)数学课上,老师出了一道题,如图①,Rt△ABC中,∠C=90°,AC=
12
AB
,求证:∠B=30°,请你完成证明过程.
(2)如图②,四边形ABCD是一张边长为2的正方形纸片,E、F分别为AB、CD的中点,沿过点D的抓痕将纸片翻折,使点A落在EF上的点A′处,折痕交AE于点G,请运用(1)中的结论求∠ADG的度数和AG的长.
(3)若矩形纸片ABCD按如图③所示的方式折叠,B、D两点恰好重合于一点O(如图④),当AB=6,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△AOB是一张放在平面直角坐标系中的三角形纸片,点O与原点精英家教网重合,点A在x轴上,点B在y轴上OB=
3
,∠BAO=30°,将Rt△AOB折叠,使OB边落在AB边上,点O与点D重合,折痕为BE.
(1)求点E和点D的坐标;
(2)求经过O、D、A三点的二次函数解析式;
(3)设直线BE与(2)中二次函数图象的对称轴交于点F,M为OF中点,N为AF中点,在x轴上是否存在点P,使△PMN的周长最小,若存在,请求出点P的坐标和最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△AOB是一张放在平面直角坐标系中的三角形纸片,点O与原

点重合,点A在x轴正半轴上,点B在y轴正半轴上,,将Rt△AOB折叠,使OB边落在AB边上,点O与点D重合,折痕为BE.

(1)求点E和点D的坐标;

(2)求经过O、D、A三点的二次函数图像的解析式.

查看答案和解析>>

同步练习册答案