精英家教网 > 初中数学 > 题目详情

在平面直角坐标系xOy中,O是坐标原点,等边三角形OAB的一个顶点为A(2,0),另一个顶点B在第一象限内.
(1)求经过O、A、B三点的抛物线的解析式;
(2)如果一个四边形是以它的一条对角线为对称轴的轴对称图形,那么我们称这样的四边形为“筝形”.点Q在(1)的抛物线上,且以O、A、B、Q为顶点的四边形是“筝形”,求点Q的坐标;
(3)设△OAB的外接圆⊙M,试判断(2)中的点Q与⊙M的位置关系,并通过计算说明理由.

解:(1)过B作BC⊥x轴于C.
∵等边三角形OAB的一个顶点为A(2,0),
∴OB=OA=2,AC=OC=1,∠BOC=60°.
∴BC=
∴B
设经过O、A、B三点的抛物线的
解析式为:
将A(2,0)代入得:
解得
∴经过O、A、B三点的抛物线的解析式为


(2)依题意分为三种情况:
(ⅰ)当以OA、OB为边时,
∵OA=OB,
∴过O作OQ⊥AB交抛物线于Q.
则四边形OAQB是筝形,且∠QOA=30°.
作QD⊥x轴于D,QD=ODtan∠QOD,
设Q,则
解得:
∴Q
(ⅱ)当以OA、AB为边时,由对称性可知Q
(ⅲ)当以OB、AB为边时,抛物线上不存在这样的点Q使BOQA为筝形.
∴Q

(3)点Q在⊙M内.
由等边三角形性质可知△OAB的外接圆圆心M是(2)中BC与OQ的交点,
当Q时,
∵MC∥QD,
∴△OMC∽△OQD.



∴MQ==


∴Q在⊙M内.
当Q时,由对称性可知点Q在⊙M内.
综述,点Q在⊙M内.
分析:(1)先求出点B,则设抛物线的顶点式,将点A代入即得到方程式;
(2)(ⅰ)当以OA、OB为边时,作QD⊥x轴于D,QD=ODtan∠QOD,QD=ODtan∠QOD,从而求得点Q.(ⅱ)当以OA、AB为边时,由对称性求得Q.(ⅲ)当以OB、AB为边时,抛物线上不存在这样的点Q使BOQA为筝形.求得点Q.
(3)点Q在⊙M内.由等边三角形性质可知△OAB的外接圆圆心M是(2)中BC与OQ的交点,求得△OMC∽△OQD.从而求得点M,进而求得MQ,从而求得点Q的位置.
点评:本题考查了二次函数的综合运用,(1)先求出点B,则设抛物线的顶点式,将点A代入即得到方程式;(2)(ⅰ)当以OA、OB为边时,作QD⊥x轴于D,QD=ODtan∠QOD,QD=ODtan∠QOD,从而求得点Q.(ⅱ)当以OA、AB为边时,由对称性求得Q.(ⅲ)当以OB、AB为边时,抛物线上不存在这样的点Q使BOQA为筝形.求得点Q.(3)点Q在⊙M内.由等边三角形性质可知△OAB的外接圆圆心M是(2)中BC与OQ的交点,求得△OMC∽△OQD.从而求得点M,进而求得MQ,从而求得点Q的位置.本题有一定难度,思路性强.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知抛物线y=-
4
9
(x-2)2
+c与x轴交于A、B两点(点A在点B的左侧),交y轴的正半轴于点C,其顶点为M,MH⊥x轴于点H,MA交y轴于点N,sin∠MOH=
2
5
5

(1)求此抛物线的函数表达式;
(2)过H的直线与y轴相交于点P,过O,M两点作直线PH的垂线,垂足分别为E,F,若
HE
HF
=
1
2
时,求点P的坐标;
(3)将(1)中的抛物线沿y轴折叠,使点A落在点D处,连接MD,Q为(1)中的抛物线上的一动点,直线NQ交x轴于点G,当Q点在抛物线上运动时,是否存在点Q,使△ANG与△ADM相似?若存在,求出所有符合条件的精英家教网直线QG的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在平面直角坐标系xOy中,已知抛物线y=ax2-2ax+b与x轴的一个交点为A(-1,0),另一个交精英家教网点B在A点的右侧;交y轴于(0,-3).
(1)求这个二次函数的解析式;
(2)设抛物线的顶点为C,抛物线上一点D的坐标为(-3,12),在x轴上是否存在一点P,使以点P、B、C为顶点的三角形与△ABD相似?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在平面直角坐标系xOy中,直线MN分别与x轴正半轴、y轴正半轴交于点M、N,且OM=6cm,∠OMN=30°,等边△ABC的顶点B与原点O重合,BC边落在x轴的正半轴上,点A恰好落在线段MN上,如图2,将等边△ABC从图1的位置沿x轴正方向以1cm/s的速度平移,边AB、AC分别与线段MN交于点E、F,在△ABC平移的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿折线B→A→C运动,当点P达到点C时,点P停止运动,△ABC也随之停止平移.设△ABC平移时间为t(s),△PEF的面积为S(cm2).
(1)求等边△ABC的边长;
(2)当点P在线段BA上运动时,求S与t的函数关系式,并写出自变量t的取值范围;
(3)点P沿折线B→A→C运动的过程中,是否在某一时刻,使△PEF为等腰三角形?若存在,求出此时t值;若不存在,请说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•卢湾区一模)如图,已知在平面直角坐标系xoy中,抛物线y=ax2+bx+c(a>0)与x轴相交于A(-1,0),B(3,0)两点,对称轴l与x轴相交于点C,顶点为点D,且∠ADC的正切值为
12

(1)求顶点D的坐标;
(2)求抛物线的表达式;
(3)F点是抛物线上的一点,且位于第一象限,连接AF,若∠FAC=∠ADC,求F点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①,在等腰直角三角板ABC中,斜边BC为2个单位长度,现把这块三角板在平面直角坐标系xOy中滑动,并使B、C两点始终分别位于y轴、x轴的正半轴上,直角顶点A与原点O位于BC两侧.
(1)取BC中点D,问OD+DA是否发生改变,若会,说明理由;若不会,求出OD+DA;
(2)你认为OA的长度是否会发生变化?若变化,那么OA最长是多少?OA最长时四边形OBAC是怎样的四边形?并说明理由;
(3)填空:当OA最长时A的坐标(
2
2
2
2
),直线OA的解析式
y=x
y=x

查看答案和解析>>

同步练习册答案