精英家教网 > 初中数学 > 题目详情

已知,关于x的二次函数,(k为正整数).

(1)若二次函数的图象与x轴有两个交点,求k的值.
(2)若关于x的一元二次方程(k为正整数)有两个不相等的整数解,点A(m,y1),B(m+1,y2),C(m+2,y3)都在二次函数(k为正整数)图象上,求使y1≤y2≤y3成立的m的取值范围.
(3)将(2)中的抛物线平移,当顶点至原点时,直线y=2x+b交抛物线于A(-1,n)、B(2,t)两点,问在y轴上是否存在一点C,使得△ABC的内心在y轴上.若存在,求出点C的坐标;若不存在,请说明理由.

(1)1、2; (2) m≥;(3)(0,-4).

解析试题分析:(1)由二次函数的图象与x轴有两个交点,知一元二次方程有两不相等的实数根,从而根的判别式大于0,解不等式求出正整数解即可;
(2)由关于x的一元二次方程(k为正整数)有两个不相等的整数解得到k=1,从而得到函数解析式为,进而根据y1≤y2≤y3列不等式组求解即可;
(3)根据轴对称性质求解即可.
试题解析:(1)∵二次函数的图象与x轴有两个交点 ,
∴△=16-8(k-1)>0,∴16-8k+8>0,解得k<3.
∵k为正整数,∴k=1、2.
(2) ∵关于x的一元二次方程(k为正整数)有两个不相等的整数解,
∴k="1." ∴.
∴y1=2m2="4m," y2=2(m+1)2+4(m+1),y3=2(m+2)2+4(m+2)
,解得m≥.
(3) 存在.
因为内心在轴上,所以∠ACO=∠BCO,找A点关于y轴的对称点A ′(1,2),直线A ′B:y=6x-4,与y轴的交点即为所求C点,坐标为(0,-4).
考点:1.二次函数的图象与x轴交点问题;2. 一元二次方程根的判别式;3. 二次函数与不等式组;4.轴对称的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

在平面直角坐标系中,抛物线过点,且与x轴交于A、B两点(点A在点B左侧),与y轴交于点C.点D的坐标为,连接CA,CB,CD.

(1)求证:
(2)是第一象限内抛物线上的一个动点,连接DP交BC于点E.
①当△BDE是等腰三角形时,直接写出点E的坐标;
②连接CP,当△CDP的面积最大时,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,二次函数的图象与x轴交于点A(-3,0)和点B,以AB为边在x轴上方作正方形ABCD,点P是x轴上一动点,连接DP,过点P作DP的垂线与y轴交于点E.

(1)请直接写出点D的坐标:
(2)当点P在线段AO(点P不与A、O重合)上运动至何处时,线段OE的长有最大值,求出这个最大值;
(3)是否存在这样的点P,使△PED是等腰三角形?若存在,请求出点P的坐标及此时△PED与正方形ABCD重叠部分的面积;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

小明利用暑假20天(8月5日至24日)参与了一家网店经营的社会实践.负责在网络上销售一种新款的SD卡,每张成本价为20元.第天销售的相关信息如下表所示.

销售量p(张)

销售单价q(元/张)

 
(1)请计算哪一天SD卡的销售单价为35元?
(2)在这20天中,在网络上这款销售SD卡在哪一天获得利润最大?这一天赚了多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在直角梯形中, , 高(如图1). 动点同时从点出发, 点沿运动到点停止, 点沿运动到点停止,两点运动时的速度都是1cm/s,而当点到达点时,点正好到达点. 设同时从点出发,经过的时间为(s)时, 的面积为 (如图2). 分别以为横、纵坐标建立直角坐标系, 已知点边上从运动时, 的函数图象是图3中的线段.

(图1)                      (图2)                (图3)
(1)分别求出梯形中的长度;
(2)分别写出点边上和边上运动时, 的函数关系式(注明自变量的取值范围), 并在图3中补全整个运动中关于的函数关系的大致图象.
(3)问:是否存在这样的t,使PQ将梯形ABCD的面积恰好分成1:6的两部分?若存在,求出这样的t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某商场销售某种品牌的手机,每部进货价为2500元.市场调研表明:当销售价为2900元时,平均每天能售出8部;而当销售价每降低50元时,平均每天就能多售出4部.
(1)当售价为2800元时,这种手机平均每天的销售利润达到多少元?
(2)若设每部手机降低x元,每天的销售利润为y元,试写出y与x之间的函数关系式.
(3)商场要想获得最大利润,每部手机的售价应订为多少元?此时的最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如下表:

x

-1
0
  1
2
3
4

y

8
3
0
-1
0
3

(1)求该二次函数的解析式;
(2)当x为何值时,y有最小值,最小值是多少?
(3)若A(m,y1),B(m+2,y2)两点都在该函数的图象上,计算当m 取何值时,

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知二次函数

(1)证明:不论取何值,该函数图象与轴总有两个公共点;
(2)若该函数的图象与轴交于点(0,5),求出顶点坐标,并画出该函数图象.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:抛物线y=ax2+bx+c(a>0)的图象经过点B(12,0)和C(0,-6),对称轴为x=2.

(1)求该抛物线的解析式;
(2)点D在线段AB上且AD=AC,若动点P从A出发沿线段AB以每秒1个单位长度的速度匀速运动,同时另一动点Q以某一速度从C出发沿线段CB匀速运动,问是否存在某一时刻,使线段PQ被直线CD垂直平分?若存在,请求出此时的时间t(秒)和点Q的运动速度;若不存在,请说明理由;
(3)在(2)的结论下,直线x=1上是否存在点M,使△MPQ为等腰三角形?若存在,请求出所有点M的坐标;若不存在请说明理由.

查看答案和解析>>

同步练习册答案