精英家教网 > 初中数学 > 题目详情
如图,已知AB为⊙O的直径,直线BC与⊙O相切于点B,过A作AD∥OC交⊙O于点D,连接CD.
(1)求证:CD是⊙O的切线;
(2)若AD=2,直径AB=6,求线段BC的长.

【答案】分析:(1)连接OD,要证明CD为圆O的切线,只要证明∠CDB=90°即可;
(2)连接BD,根据已知求得△ADB∽△OBC再根据相似比即可求得BC的值.
解答:(1)证明:连接OD,如图所示:
∵OA=OD,
∴∠ODA=∠OAD.
∵AD∥CO,
∴∠COD=∠ODA,∠COB=∠OAD.
∴∠COD=∠COB.
∵OD=OB,OC=OC,
∴△ODC≌△OBC.
∴∠ODC=∠OBC.
∵CB是圆O的切线且OB为半径,
∴∠CBO=90°.
∴∠CDO=90°.
∴OD⊥CD.
又∵CD经过半径OD的外端点D,
∴CD为圆O的切线.

(2)解:连接BD,CO,
∵AB是直径,
∴∠ADB=90°.
在直角△ADB中,BD=
∵∠ADB=∠OBC=90°,且∠COB=∠BAD,
∴△ADB∽△OBC.(8分)
,即
∴BC=6
点评:本题利用了等边对等角,平行线的性质,全等三角形的判定和性质,切线的判定和性质,直径对的圆周角是直角,勾股定理,相似三角形的判定和性质求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、如图,已知AB为⊙O的直径,C为⊙O上一点,CD⊥AB于D,AD=9,BD=4,以C为圆心,CD为半径的圆与⊙O相交于P,Q两点,弦PQ交CD于E,则PE•EQ的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知AB为半⊙O的直径,直线MN与⊙O相切于C点,AE⊥MN于E,BF⊥MN于F.
求证:(1)AE+BF=AB;(2)EF2=4AE•BF.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知AB为⊙O的直径,直线l与⊙O相切于点D,AC⊥l于C,AC交⊙O于点E,DF⊥AB于F.
(1)图中哪条线段与BF相等?试证明你的结论;
(2)若AE=3,CD=2,求⊙O的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•包头)如图,已知AB为⊙O的直径,过⊙O上的点C的切线交AB的延长线于点E,AD⊥EC于点D且交⊙O于点F,连接BC,CF,AC.
(1)求证:BC=CF;
(2)若AD=6,DE=8,求BE的长;
(3)求证:AF+2DF=AB.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•呼和浩特)如图,已知AB为⊙O的直径,PA与⊙O相切于点A,线段OP与弦AC垂直并相交于点D,OP与弧AC相交于点E,连接BC.
(1)求证:∠PAC=∠B,且PA•BC=AB•CD;
(2)若PA=10,sinP=
35
,求PE的长.

查看答案和解析>>

同步练习册答案